scholarly journals Sensorless SPMSM Position Estimation Using Position Estimation Error Suppression Control and EKF in Wide Speed Range

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhanshan Wang ◽  
Longhu Quan ◽  
Xiuchong Liu

The control of a high performance alternative current (AC) motor drive under sensorless operation needs the accurate estimation of rotor position. In this paper, one method of accurately estimating rotor position by using both motor complex number model based position estimation and position estimation error suppression proportion integral (PI) controller is proposed for the sensorless control of the surface permanent magnet synchronous motor (SPMSM). In order to guarantee the accuracy of rotor position estimation in the flux-weakening region, one scheme of identifying the permanent magnet flux of SPMSM by extended Kalman filter (EKF) is also proposed, which formed the effective combination method to realize the sensorless control of SPMSM with high accuracy. The simulation results demonstrated the validity and feasibility of the proposed position/speed estimation system.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1254
Author(s):  
Gianluca Brando ◽  
Adolfo Dannier ◽  
Ivan Spina

This paper focuses on the performance analysis of a sensorless control for a Doubly Fed Induction Generator (DFIG) in grid-connected operation for turbine-based wind generation systems. With reference to a conventional stator flux based Field Oriented Control (FOC), a full-order adaptive observer is implemented and a criterion to calculate the observer gain matrix is provided. The observer provides the estimated stator flux and an estimation of the rotor position is also obtained through the measurements of stator and rotor phase currents. Due to parameter inaccuracy, the rotor position estimation is affected by an error. As a novelty of the discussed approach, the rotor position estimation error is considered as an additional machine parameter, and an error tracking procedure is envisioned in order to track the DFIG rotor position with better accuracy. In particular, an adaptive law based on the Lyapunov theory is implemented for the tracking of the rotor position estimation error, and a current injection strategy is developed in order to ensure the necessary tracking sensitivity around zero rotor voltages. The roughly evaluated rotor position can be corrected by means of the tracked rotor position estimation error, so that the corrected rotor position is sent to the FOC for the necessary rotating coordinate transformation. An extensive experimental analysis is carried out on an 11 kW, 4 poles, 400 V/50 Hz induction machine testifying the quality of the sensorless control.


2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Yong Li ◽  
Hao Wu ◽  
Xing Xu ◽  
Xiaodong Sun ◽  
Jindong Zhao

Permanent magnet traction motor has the advantages of high efficiency, high power density, high torque density and quick dynamic response, which has been widely used in the traction field of electric vehicle. The high-performance control of permanent magnet traction motor depends on accurate rotor position information, which is usually obtained by using mechanical position sensors such as hall sensor, encoder and rotary transformer. However, the traditional mechanical sensor has the disadvantages of high cost, large volume and poor anti-interference ability, which limits the application of permanent magnet motor. The sensorless control technology is an effective way to solve the above-mentioned problem. Firstly, the sensorless control techniques of permanent magnet motor are classified. The sensorless control techniques of permanent magnet motor for rotor initial position, zero-low speed range, medium-high speed range and full speed range are deeply described and compared. Finally, the development trend of sensorless control technology of permanent magnet traction motor is prospected.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041989027
Author(s):  
Shi Peicheng ◽  
Wang Chen ◽  
Zhang Rongyun ◽  
Wang Suo

Aiming at the problems of high cost, increased volume, low reliability, and environmental interference caused by sensor installation on permanent magnet synchronous motor, estimation method for motor speed and rotor position is proposed based on iterated cubature Kalman filter algorithm and applied to permanent magnet synchronous motor sensorless control. First, discrete mathematical model of permanent magnet synchronous motor in α-β coordinate system is established. Then, based on cubature Kalman filter and iterated cubature Kalman filter, simulation model of sensorless vector control system with dual closed-loop of permanent magnet synchronous motor speed and current is established. Also, simulation verification of two working conditions with given rotation speed and load is carried out. Finally, hardware experimental verification platform is built based on TMS320F28335 chip. Both simulation analysis and experimental results show that iterated cubature Kalman filter application to sensorless control of permanent magnet synchronous motor demonstrates good anti-load variation interference, stable motor operation, high motor speed and rotor position estimation accuracy, which suits the application with high requirement for precise motor control and mean important reference value and promotion significance.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6047
Author(s):  
Yujiao Zhao ◽  
Haisheng Yu ◽  
Shixian Wang

This article presents an improved super-twisting high-order sliding mode observer for permanent magnet synchronous motors to achieve high-performance sensorless control. The proposed observer is able to simultaneously estimate rotor position and speed, as well as track parameter disturbances online. Then, according to the back-EMF model, the sensorless observer is further constructed to improve the estimation effect. The estimated rotor position and speed are used to replace the actual values detected by the sensor, and the estimated parameter disturbances are considered as feedback values to compensate the command voltage. In this way, not only is the estimation accuracy improved, but the robustness against uncertainties is also enhanced. Simulation and experimental results show that the proposed observer can effectively track the rotor position and speed and obtain good dynamic and steady-state performance.


Author(s):  
Qing Lu ◽  
Wenye Wu ◽  
Tao Zhang ◽  
Lihong Mo

In this article, to improve the accuracy of rotor position estimation in sensorless permanent magnet synchronous motor drives, a reduced-order resonant regulator for the rotor position sliding mode observer is proposed. Since fundamental back electromotive force can be utilized to calculate the rotor position, a mathematical model for the observer is first established based on the analysis of estimation fluctuation error, where a reduced-order resonant regulator is applied to extract the fundamental back electromotive force. Then, the phase-locked loop with back electromotive force normalization is used to compute the rotor position and speed. Finally, the experimental bench of permanent magnet synchronous motor driving system is built. The experimental results verify that the proposed strategy can effectively reduce the estimation error and meanwhile improve estimation accuracy.


Sign in / Sign up

Export Citation Format

Share Document