scholarly journals Effect of Nd Addition on the Microstructure and Martensitic Transformation of Ni-Ti Shape Memory Alloys

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. Dovchinvanchig ◽  
C. W. Zhao ◽  
S. L. Zhao ◽  
X. K. Meng ◽  
Y. J. Jin ◽  
...  

The effect of rare earth element Nd addition on the microstructure and martensitic transformation behavior of Ni50Ti50−xNdx(x=0, 1, 3, 7, 20) shape memory alloy was investigated experimentally. The results showed that the microstructure of Ni-Ti-Nd ternary alloy consists of the NiNd phase and the NiTi matrix. One-step martensitic transformation was observed in all alloys. The martensitic transformation start temperatureMsincreased gradually with increasing Nd content for Ni-Ti-Nd alloys.

2021 ◽  
Vol 3 (1) ◽  
pp. 35-40
Author(s):  
M. Dovchinvanchig ◽  
Ya. Gangantogos ◽  
B. Munkhjargal

The effect of rare earth element Er addition on the microstructure and phase transformation behavior of Ni_{50}Ti_{50-x}Er_{x} (x =0, 1, 5) shape memory alloy was investigated experimentally. The results showed that the microstructure of Ni-Ti-Er ternary alloys consists of the NiEr precipitate and the NiTi matrix. A one-step martensitic transformation was observed in all alloys. The martensitic transformation temperature M_s increased gradually with increasing Er content.


2016 ◽  
Vol 30 (28) ◽  
pp. 1650286
Author(s):  
Dovchinvanchig Maashaa ◽  
Ulzii-Orshikh Dorj ◽  
Malrey Lee ◽  
Min Hi Lee ◽  
Chunwang Zhao ◽  
...  

The effect of rare earth element neodymium (Nd) addition on the microstructure and martensitic transformation behavior of Ni[Formula: see text]Ti[Formula: see text]Nd[Formula: see text] ([Formula: see text] = 0, 0.1, 0.3, 0.5 and 0.7 at.%) shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results show that the microstructure of Ni–Ti–Nd ternary alloy consists of NiNd phase, NiTi2 and the NiTi matrix. A one-step martensitic transformation is observed in the alloys. The martensitic transformation temperature Ms increases sharply increasing 0.1–0.7 at.% Nd content is added.


Author(s):  
Dovchinvanchig Maashaa

The effect of rare earth element neodymium (Nd) addition on the microstructure and phase transformation behavior of Ni50Ti47Fe2Nd1 shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results show that the microstructure of Ni-Ti-Fe-Nd quaternary alloy consists of NiNd3 phase, NiTi2 and the NiTi matrix. A one-step martensitic transformation is observed in the alloys. The martensitic transformation start temperature Ms 54.110C.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 345 ◽  
Author(s):  
Weiya Li ◽  
Chunwang Zhao

The microstructure and martensitic transformation behavior of Ni50−xTi50Lax (x = 0.1, 0.3, 0.5, 0.7) shape memory alloys were investigated experimentally. Results show that the microstructure of Ni50−xTi50Lax alloys consists of a near-equiatomic TiNi matrix, LaNi precipitates, and Ti2Ni precipitates. With increasing La content, the amounts of LaNi and Ti2Ni precipitates demonstrate an increasing tendency. The martensitic transformation start temperature increases gradually with increasing La content. The Ni content is mainly responsible for the change in martensite transformation behavior in Ni50−xTi50Lax alloys.


2018 ◽  
Vol 24 (02) ◽  
pp. 22-25
Author(s):  
Dovchinvanchig M ◽  
Chunwang Zhao

The nanocrystal, phase transformation and microstructure behavior of Ni50Ti50 shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results showed that the microstructure of Ni-Ti binary alloy consists of the NiTi2 phase and the NiTi matrix phase. One-step phase transformation was observed alloy.


2010 ◽  
Vol 654-656 ◽  
pp. 2095-2098
Author(s):  
Yun Qing Ma ◽  
Shui Yuan Yang ◽  
San Li Lai ◽  
Shi Wen Tian ◽  
Cui Ping Wang ◽  
...  

The rare earth element Gd is added to Ni53Mn22Co6Ga19 high-temperature shape memory alloy to refine the grain size and adjust the distribution of γ phase, and their microstructure, martensitic transformation behaviors, mechanical and shape memory properties were investigated. The results show that the grain size is obviously decreased and the γ phase tends to segregate at grain boundaries with increasing Gd content. Small amounts of Gd-rich phase were formed with 0.1 at.% Gd addition. The martensitic transformation temperature abruptly increases with 0.1 at.% Gd addition, then almost keeps constant with further increasing Gd content. The addition of 0.1 at.% Gd is proved to be beneficial to both tensile stress and strain before fracture, but negative to the shape-memory effect.


2008 ◽  
Vol 138 ◽  
pp. 399-406 ◽  
Author(s):  
Xiang Long Meng ◽  
Yu Dong Fu ◽  
Wei Cai ◽  
J.X. Zhang ◽  
Qing Fen Li ◽  
...  

The martensitic transformation behavior and shape memory effect (SME) have been investigated in a Ni-rich Ti29.6Ni50.4Hf20 high temperature shape memory alloy (SMA) in the present study. After aging, the transformation temperatures of Ti29.6Ni50.4Hf20 alloy increase obviously due to the precipitation of (Ti,Hf)3Ni4 particles. And the transformation sequence changes from one-step to two-step. When the experimental alloy is aged at different temperatures for 2h, the transformation temperatures increase rapidly with increasing the aging temperature and then change slightly with further increasing the aging temperature. Most of the martensite variants preferentially oriented in the aged Ti29.6Ni50.4Hf20 alloy. The aged Ti29.6Ni50.4Hf20 alloy shows the better thermal stability of transformation temperatures than the solution-treated one because the precipitates depress the introduction of defects during thermal cycling. In addition, the proper aged Ti29.6Ni50.4Hf20 alloy also shows the larger SME than the solution-treated one since the precipitates strengthen the matrix strongly.


2006 ◽  
Vol 503-504 ◽  
pp. 1013-0 ◽  
Author(s):  
Chao Ying Xie ◽  
Z.G. Fan ◽  
Z.H. Li ◽  
G.Q. Xiang ◽  
X.H. Cheng

Microstructures and transformation behavior of TiNi shape memory alloy after high temperature ECAE process have been investigated. It is found that the initial coarse grains were refined after high temperature ECAE processes and short annealing at 750°C. Transformation temperatures of TiNi alloy sharply decreased after two ECAE processes, rose obviously when annealed at 750°C for 5min, and quickly rose back after annealing at 500°C for 2 hours. Reasons for phase transformation behavior changes have been discussed.


Sign in / Sign up

Export Citation Format

Share Document