scholarly journals Effect of One-Target Focus Type on Hydrodynamic Characteristics of Tower Solar Cavity Receiver

2014 ◽  
Vol 6 ◽  
pp. 615942 ◽  
Author(s):  
Yun Hao ◽  
Kaituo Chen ◽  
Yueshe Wang ◽  
Tian Hu

On account of one-target focus type of the heliostats in the tower solar power technology, the heat transfer was analyzed for the vapor-liquid two-phase or single-phase superheated steam in the parallel heated panel bundles of the solar cavity receiver. A nonlinear mathematical model of the hydrodynamic characteristics in the evaporation panels was developed to obtain the flow rate distribution, thermal deviation, and two-phase flow circulation reliability of the working fluid under the severe nonuniform heat flux from the one-target focus of the heliostats. The simulation results show that for the evaporation panels the flow distribution can synchronize with that of the heat flux at the low heat flux, while for the superheater sections the flow distribution decreases with the increase of heat flux. This desynchrony may give rise to stagnation or backflow of the working fluid and lead to the panels burst or erosion due to the local overheating in some extreme situation.

Author(s):  
Yefei Liu ◽  
Yang Liu ◽  
Xingtuan Yang ◽  
Liqiang Pan

Series of experiments are conducted in a single microchannel, where subcooled water flows upward inside a transparent and vertical microchannel. The cross section of the channel is rectangle with the hydraulic diameter of 2.8mm and the aspect ratio of 20. The working fluid is 3–15K subcooled and surface heat flux on the channel is between 0–3.64 kW/m2, among which two-phase instability at low vapor quantity may occur. By using a novel transparent heating technique and a high-speed camera, visualization results are obtained. The parameters are acquired with a National Instruments Data Acquisition card. In the experiments, long-period oscillation and short-period oscillation are observed as the primary types of instability in a microchannel. Instability characteristics represented from signals correspond well with the flow pattern. Moreover, effects of several parameters are investigated. The results indicate that the oscillating period generally increases with the heat flux density and decreases with inlet subcooling, while the effects of inlet resistance are more complex.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987590
Author(s):  
Yun Hao ◽  
Yueshe Wang

It is important to study the effects of heat flux on the thermo-hydraulic characteristics in a solar cavity receiver because of the non-uniform radiation flux temporally and spatially. In this article, we presented a mathematical model of thermo-hydraulic characteristics of a solar cavity receiver, considering the effect of heat flux distribution on the energy transfer (radiation–conduction–convection). Using the model, the thermo-hydraulic characteristics under high concentrated heat flux were studied and then optimized the characteristics from two aspects: tube diameter (22, 27, 32, and 38 mm) and connection structure of the heating surface (H-type, central inlet/outlet, and vertical U-type). It was found that flow distribution changed smoothly at the diameter of 27 mm with the increase of the heat flux; when the diameter of tubes at the certain distance (1.6 σHF) from the spot center was replaced by 38 mm, the thermo-hydraulic characteristics were improved. For the evaporating surfaces, the thermo-hydraulic characteristics of working fluid (water) with the central inlet/outlet connection structure were better than those of the H-type connection structure. For the surperheated surfaces, the vertical U-type connection structure was applied to obtain the high temperature steam. These research findings are helpful for the safe and stable operation of the whole solar power system.


2016 ◽  
Vol 37 (3) ◽  
pp. 109-138 ◽  
Author(s):  
Henryk Bieliński

AbstractThe current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.


Author(s):  
Olubunmi Popoola ◽  
Ayobami Bamgbade ◽  
Yiding Cao

An effective design option for a cooling system is to use a two-phase pumped cooling loop to simultaneously satisfy the temperature uniformity and high heat flux requirements. A reciprocating-mechanism driven heat loop (RMDHL) is a novel heat transfer device that could attain a high heat transfer rate through a reciprocating flow of the two-phase working fluid inside the heat transfer device. Although the device has been tested and validated experimentally, analytical or numerical study has not been undertaken to understand its working mechanism and provide guidance for the device design. The objective of this paper is to develop a numerical model for the RMDHL to predict its operational performance under different working conditions. The developed numerical model has been successfully validated by the existing experimental data and will provide a powerful tool for the design and performance optimization of future RMDHLs. The study also reveals that the maximum velocity in the flow occurs near the wall rather than at the center of the pipe, as in the case of unidirectional steady flow. This higher velocity near the wall may help to explain the enhanced heat transfer of an RMDHL.


Author(s):  
Anand P. Roday ◽  
Michael K. Jensen

The critical heat flux (CHF) condition sets an upper limit on the flow-boiling heat transfer process. With the growing demand for the use of two-phase flow in micro and nano-sized devices, there is a strong need to understand the CHF phenomenon in channels of such small dimensions. This study experimentally investigates the critical heat flux condition during flow boiling in a single stainless steel microtube of two different diameters—0.427mm, and 0.286 mm. Degassed water is the working fluid. The effects of various parameters—diameter, mass flux (350–1500 kg/m2s), inlet subcooling (2°C–50°C), and length-to-diameter ratio (75–200) on the CHF condition are studied for the exit condition being nearly atmospheric pressure. The CHF increases with an increase in mass flux. The effect of the inlet subcooling on the CHF condition is more complex. With a decreasing inlet subcooling, the CHF decreases until saturated liquid is reached; thereafter, the CHF increases with quality.


Author(s):  
Yiding Cao ◽  
Mingcong Gao

This paper introduces a novel heat transfer mechanism that facilitates two-phase heat transfer while eliminating the so-called cavitation problem commonly encountered by a conventional pump. The heat transfer device is coined as the reciprocating-mechanism driven heat loop (RMDHL), which includes a hollow loop having an interior flow passage, an amount of working fluid filled within the loop, and a reciprocating driver. The hollow loop has an evaporator section, a condenser section, and a liquid reservoir. The reciprocating driver is integrated with the liquid reservoir and facilitates a reciprocating flow of the working fluid within the loop, so that liquid is supplied from the condenser section to the evaporator section under a substantially saturated condition and the so-called cavitation problem associated with a conventional pump is avoided. The reciprocating driver could be a solenoid-operated reciprocating driver for electronics cooling applications and a bellows-type reciprocating driver for high-temperature applications. Experimental study has been undertaken for a solenoid-operated heat loop in connection with high heat flux thermal management applications. Experimental results show that the heat loop worked very effectively and a heat flux as high as 300 W/cm2 in the evaporator section could be handled. The applications of the bellows-type reciprocating heat loop for gas turbine nozzle guide vanes and the leading edges of hypersonic vehicles are also illustrated. The new heat transfer device is expected to advance the current two-phase heat transfer device and open up a new frontier for further research and development.


Author(s):  
Liang-Han Chien ◽  
Han-Yang Liu ◽  
Wun-Rong Liao

A heat sink integrating micro-channels with multiple jets was designed to achieve better heat transfer performance for chip cooling. Dielectric fluid FC-72 was the working fluid. The heat sink contained 11 micro-channels, and each channel was 0.8 mm high, 0.6 mm wide, and 12 mm in length. There were 3 or 5 pores on each micro-channel. The pore diameters were either 0.24 or 0.4 mm, and the pore spacing ranged from 1.5 to 3 mm. In the tests, the saturation temperature of cooling device was set at 30 and 50°C, and the volume flow rate ranged from 9.1 to 73.6 ml/min per channel (total flow rate = 100∼810 ml/min). The experimental result showed that heat transfer performance increased with increasing flow rate for single phase heat transfer. For heat flux between 20 and 100 kW/m2, the wall superheat decreases with increasing flow rate at a fixed heat flux. However, the influence of the flow rate diminished when the channels are in two phase heat transfer regime. Except for the lowest flow rate (9.1 ml/min), the heat transfer performance increased with increasing jet diameter/spacing ratios. The best surface had three nozzles of 0.4 mm diameter in 3.0 mm jet spacing. It had the lowest thermal resistance of 0.0611 K / W in the range of 200 ∼ 240 W heat input.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Roland Rzehak ◽  
Eckhard Krepper

We investigate the present capabilities of CFD for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. Very similar modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant nondimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12) as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, liquid temperature, and bubble size. Robust predictive capabilities of the modeling require that it is validated for a wide range of parameters. It is known that a careful calibration of correlations used in the wall boiling model is necessary to obtain agreement with the measured data. We here consider tests under a variety of conditions concerning liquid subcooling, flow rate, and heat flux. It is investigated to which extent a set of calibrated model parameters suffices to cover at least a certain parameter range.


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate two-phase pressure drop in a circular vertical mini-channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. A uniform heat flux is applied to the test section by DC power supply. Two phase frictional pressure drop variation with mass flux, vapour quality and heat flux was determined. The experimental results are compared to predictive methods available in literature for frictional pressure drop. The Homogeneous model and the correlation of Mu¨ller Steinhagen et al. [14] are in good agreement with our experimental data with MAD of 27% and 26% respectively.


2012 ◽  
Vol 16 (1) ◽  
pp. 239-250 ◽  
Author(s):  
Mohamed Braikia ◽  
Larbi Loukarfi ◽  
Ali Khelil ◽  
Hassan Naji

The aim of this study is to examine different blowing configurations of multiple swirling jets for use it in terminal units of ventilation applications. The influence of several parameters such as the inclined vanes of diffuser and the sense of rotation of the single or multiple swirling jets, their number and their arrangement on the flow resulting dynamically and thermally is experimentally investigated. Flow rate was adjusted at Reynolds numbers, Re0, ranging from 104 to 30.103. The current study is carried out under uniform heat flux condition for each diffuser at Reynolds number of 30.103, the air being the working fluid. Experiences concerning the fusion of several jets show that the resulting jet is clearly more homogenized under swirling influence. The findings of this study show that the gap between the jets and their sense of rotation relative to the central jet, affects the quality of the homogenization of ambiance. Among the studied different configuration, the one which consists of a swirling central jet controlling the behavior of six swirling jets in counter-rotation is shown to be the most effective in terms of thermal destratification.


Sign in / Sign up

Export Citation Format

Share Document