scholarly journals Formation and Mechanical Properties of Pd-Si Binary Bulk Metallic Glasses

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Na Chen ◽  
Hongxia Zhang ◽  
Ke-Fu Yao

Glassy spherical samples in the diameters up to 10 mm were produced in a binary Pd-Si alloy system. These Pd-Si bulk metallic glasses (BMGs) combine high strength of about 1600 MPa and superplasticity of over 70% together. In addition to abundant micrometer-scale shear bands, 10–20 nanometer-sized shear bands were also observed on the side surface of the deformed sample. The excellent ductility shown by the Pd-Si BMGs is suggested to arise from the nanoscale structural inhomogeneity.

2015 ◽  
Vol 1120-1121 ◽  
pp. 68-72
Author(s):  
Yi Si

The deformation and mechanical properties of Zr-based bulk metallic glasses (BMGs) under a nanoindenter and the effect of cooling rate, the effect of cooling rate, tungsten fiber addition and annealing on them have been studied by means of a nanoindentation instrument and a scanning electron microscope (SEM). The results indicate that the deformation of Zr-based BMGs under a nanoindenter is characterized by multiple shear bands and viscous flow which confirms the existence of a amount of plastic deformation. For pure quenched Zr-based BMGs, the larger the size of samples or the nearer the location away from the surface of a same sample, the smaller the values of microhardness (Hv) and elastic modulus (E); Annealing and tungsten fiber addition enhance the values of Hv and E; meanwhile, they also significantly change morphology around a nanoindenter and the amount of plastic deformation. The mechanism of plastic deformation is preliminarily analyzed.


2017 ◽  
Vol 24 (4) ◽  
pp. 402-410 ◽  
Author(s):  
Xu-dong Yuan ◽  
Sheng-hai Wang ◽  
Kai-kai Song ◽  
Xiao-liang Han ◽  
Yu-sheng Qin ◽  
...  

2011 ◽  
Vol 148-149 ◽  
pp. 241-244 ◽  
Author(s):  
Feng Xiang Qin ◽  
Guo Qiang Xie ◽  
Zhen Hua Dan ◽  
Akihisa Inoue

Ti-based bulk metallic glasses with minor addition of Ag, Au or Pt elements were prepared by copper mold casting. The Microstructure of the as-cast samples was examined by TEM. Nanoparticles identified as cubic Pd3Ti with crystal planes of (111), (200), (220) and (311) are observed in all the alloys modified by the minor addition of Ag, Au or Pt. The results revealed that the glassy/nanoparticle composited alloys exhibited high strength about 2000 MPa and plastic strain between 1.5-10% due to the inhibition of propagation of shear band.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1728 ◽  
Author(s):  
J. L. Cheng ◽  
J. J. Wang ◽  
J. X. Rui ◽  
Y. L. Yun ◽  
W. Zhao ◽  
...  

In this paper, we prepare the alloys of Zr41.2Ti13.8Cu12.5Ni10Be22.5, Zr44.4Ti14.8Cu14.3Ni11.5Be15, and Zr38Ti12.7Cu9.6Ni7.7Be32 to show the effects of alloy composition on the inhomogeneity structures and mechanical properties of Zr-based bulk metallic glasses (BMGs). Compared with the best glass former Zr41.2Ti13.8Cu12.5Ni10Be22.5, some nanoscale inhomogeneity structures can be induced by shifting the compositions towards a primary phase in the alloys of Zr44.4Ti14.8Cu14.3Ni11.5Be15 and Zr38Ti12.7Cu9.6Ni7.7Be32. The room temperature compression tests reveal that theBMGs contained nanoscale inhomogeneity structures exhibit superior mechanical properties with the high strength of 1780 MPa and especially a remarkable plastic strain of over 9%. These findings provide a new perspective to enhance the ductility of BMGs by introducing nanoscale inhomogeneity structures based on the phase competition strategy.


2007 ◽  
Vol 22 (2) ◽  
pp. 285-301 ◽  
Author(s):  
J. Eckert ◽  
J. Das ◽  
S. Pauly ◽  
C. Duhamel

The development of bulk metallic glasses and composites for improving the mechanical properties has occurred with the discovery of many ductile metallic glasses and glass matrix composites with second phase dispersions with different length scales. This article reviews the processing, microstructure development, and resulting mechanical properties of Zr-, Ti-, Cu-, Mg-, Fe-, and Ni-based glassy alloys and also considers the superiority of composite materials containing different phases for enhancing the strength, ductility, and toughness, even leading to a “work-hardening-like” behavior. The morphology, shape, and length scale of the second phase dispersions are crucial for the delocalization of shear bands. The article concludes with some comments regarding future directions of the investigations of spatially inhomogeneous metallic glasses.


2007 ◽  
Vol 22 (4) ◽  
pp. 869-875 ◽  
Author(s):  
Y.H. Liu ◽  
G. Wang ◽  
M.X. Pan ◽  
P. Yu ◽  
D.Q. Zhao ◽  
...  

A class of Ni–Co–Nb–Ta bulk metallic glasses (BMGs) with a high glass-forming ability is developed. With proper compositional modification, the BMGs exhibit the enhanced plastic strain (up to 4%) and the ultimate strength (up to 3540 MPa). It is found that the interactions of shear bands such as intersecting, arresting, and branching, which normally are related to the plastic metallic glasses, can be observed both in the plastic and brittle Ni–Co–Nb–Ta BMGs. Obvious serrated flow behavior is observed during plastic deformation. The origins of the plasticity and the serrated flow in the Ni-based BMGs are analyzed in analogy to that in crystalline materials.


2009 ◽  
Vol 24 (11) ◽  
pp. 3465-3468 ◽  
Author(s):  
Jianchao Ye ◽  
Jian Lu ◽  
Yong Yang ◽  
Peter K. Liaw

Intense debates have been prompted concerning whether homogeneous deformation can be achieved in bulk metallic glasses at room temperature through the suppression of shear bands at the submicron scale. In this short communication, we demonstrate that multiple shear banding can be successfully attained via a proper modification of the microsample geometry, resulting in the appearance of a homogeneous deformation mode at the submicron scale. However, the apparent deformation homogeneity in our microcompression experiment is a manifestation of the sample geometry effect on the propagation rather than nucleation of shear bands.


2003 ◽  
Vol 94 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Mariana Calin ◽  
Jürgen Eckert ◽  
Ludwig Schultz

Sign in / Sign up

Export Citation Format

Share Document