scholarly journals Development of a Carbon Emission Calculations System for Optimizing Building Plan Based on the LCA Framework

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Feifei Fu ◽  
Hanbin Luo ◽  
Hua Zhong ◽  
Andrew Hill

Life cycle thinking has become widely applied in the assessment for building environmental performance. Various tool are developed to support the application of life cycle assessment (LCA) method. This paper focuses on the carbon emission during the building construction stage. A partial LCA framework is established to assess the carbon emission in this phase. Furthermore, five typical LCA tools programs have been compared and analyzed for demonstrating the current application of LCA tools and their limitations in the building construction stage. Based on the analysis of existing tools and sustainability demands in building, a new computer calculation system has been developed to calculate the carbon emission for optimizing the sustainability during the construction stage. The system structure and detail functions are described in this paper. Finally, a case study is analyzed to demonstrate the designed LCA framework and system functions. This case is based on a typical building in UK with different plans of masonry wall and timber frame to make a comparison. The final results disclose that a timber frame wall has less embodied carbon emission than a similar masonry structure. 16% reduction was found in this study.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Author(s):  
Serenella Sala ◽  
Andrea Martino Amadei ◽  
Antoine Beylot ◽  
Fulvio Ardente

Abstract Purpose Life cycle thinking (LCT) and life cycle assessment (LCA) are increasingly considered pivotal concept and method for supporting sustainable transitions. LCA plays a relevant role in decision support, for the ambition of a holistic coverage of environmental dimensions and for the identification of hotspots, possible trade-offs, and burden shifting among life cycle stages or impact categories. These features are also relevant when the decision support is needed in policy domain. With a focus on EU policies, the present study explores the evolution and implementation of life cycle concepts and approaches over three decades. Methods Adopting an historical perspective, a review of current European Union (EU) legal acts and communications explicitly mentioning LCT, LCA, life cycle costing (LCC), and environmental footprint (the European Product and Organisation Environmental Footprint PEF/OEF) is performed, considering the timeframe from 1990 to 2020. The documents are categorised by year and according to their types (e.g. regulations, directives, communications) and based on the covered sectors (e.g. waste, energy, buildings). Documents for which life cycle concepts and approaches had a crucial role are identified, and a shortlist of these legal acts and communications is derived. Results and discussion Over the years, LCT and life cycle approaches have been increasingly mentioned in policy. From the Ecolabel Regulation of 1992, to the Green Deal in 2019, life cycle considerations are of particular interest in the EU. The present work analysed a total of 159 policies and 167 communications. While in some sectors (e.g. products, vehicles, and waste) life cycle concepts and approaches have been adopted with higher levels of prescriptiveness, implementation in other sectors (e.g. food and agriculture) is only at a preliminary stage. Moreover, life cycle (especially LCT) is frequently addressed and cited only as a general concept and in a rather generic manner. Additionally, more stringent and rigorous methods (LCA, PEF/OEF) are commonly cited only in view of future policy developments, even if a more mature interest in lifecycle is evident in recent policies. Conclusion The EU has been a frontrunner in the implementation of LCT/LCA in policies. However, despite a growing trend in this implementation, the development of new stringent and mandatory requirements related to life cycle is still relatively limited. In fact, there are still issues to be solved in the interface between science and policy making (such as verification and market surveillance) to ensure a wider implementation of LCT and LCA.


2021 ◽  
Vol 23 (4) ◽  
pp. 1847-1860
Author(s):  
Christopher S. McCallum ◽  
Wanling Wang ◽  
W. John Doran ◽  
W. Graham Forsythe ◽  
Mark D. Garrett ◽  
...  

A life cycle thinking analysis (LCT) conducted on the production of vanillin via bamboo wet air oxidation compared to vanillin production from crude oil or kraft lignin.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saman Esmaeilian ◽  
Dariush Mohamadi ◽  
Majid Esmaelian ◽  
Mostafa Ebrahimpour

Purpose This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits. Design/methodology/approach The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied. Findings According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner. Originality/value This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.


Sign in / Sign up

Export Citation Format

Share Document