scholarly journals Novel Design of Microstrip Antenna with Improved Bandwidth

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Km. Kamakshi ◽  
Ashish Singh ◽  
Mohammad Aneesh ◽  
J. A. Ansari

A novel design of broadband patch antenna is presented in this paper. The broadband property of the proposed antenna is achieved by choosing a proper selection of dimensions and positions of slot and notch on the radiating patch. The bandwidth of the proposed antenna is found to be 30.5% with operating frequency band from 1.56 GHz to 2.12 GHz. Antenna characteristics are observed for different inclination angles “α” and its effect on bandwidths is also reported. The maximum gain of the antenna is found to be 9.86 dBi and it achieves broadside radiation pattern in the direction of maximum radiation over the operating band. The proposed antenna structure is simulated, fabricated, and tested for obtaining the desired performance. The simulated results are verified with experimental results which are in good agreement.

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1189 ◽  
Author(s):  
Anurag Singh ◽  
Sandip Vijay ◽  
Rudra Narayan Baral

In this paper, a low cross-polarization improved-gain rectangular patch antenna is presented. A patch-ground shorting pin with defected patch structure (DPS) is introduced to suppress the cross-polarization level. A High Reflective Frequency Selective Surface (HRFSS) superstrate is designed and placed over the proposed antenna at an optimized position to intensify the gain. To characterize the unit-cell of the superstrate, its transmission characteristics are extracted and discussed. Integration of the superstrate achieves a beam contraction resulting in a gain enhancement to 10.65 dBi. The proposed antenna has perfect broadside radiation with a cross-polarization level of below −30 dB in the entire half power beamwidth. The prototype of the antenna exhibits good agreement between experimental and simulated results.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Puneet Khanna ◽  
Amar Sharma ◽  
Kshitij Shinghal ◽  
Arun Kumar

A coplanar waveguide- (CPW-) fed compact wideband defected structure shaped microstrip antenna is proposed for wireless applications. Defected structure is produced by cutting theUshape antenna in the form of two-sided T shape. The proposed antenna consists of two-sidedTshape strip as compared to usual monopole patch antenna for minimizing the height of the antenna. The large space around the radiator is fully utilized as the ground is on the same plane as of radiator. Microstrip line feed is used to excite the proposed antenna placed on an FR4 substrate (dielectric constantεr=4.4). The antenna is practically fabricated and simulated. Simulated results of the proposed antenna have been obtained by using Ansoft High-Frequency Structure Simulator (HFSS) software. These results are compared with measured results by using network analyzer. Measured result shows good agreement with the simulated results. It is observed that the proposed antenna shows a wideband from 2.96 GHz to 7.95 GHz with three bands atf1=3.23 GHz,f2=4.93 GHz, andf3=7.04 GHz.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012124
Author(s):  
Ravi Shankar Saxena ◽  
S Kavitha ◽  
Ashish Singh ◽  
Anurag Mishra

Abstract In this paper, an analysis of dual frequency resonance antenna is achieved by OM-shape microstrip patch antenna. The proposed antenna is analyzed using IE3D simulation software. The analysis of proposed structure is done by varying the dielectric constants and height of the substrate as well as gain and radiation pattern of the antenna is obtained. It observed that on varying the dielectric substrate the effect on proposed antenna is very effective.


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. A. Ansari ◽  
Sapna Verma ◽  
Ashish Singh

An investigation into the design and fabrication of multiband disk patch antenna with symmetrically quad C-slots is presented in this paper. The proposed antenna shows multiband resonance frequencies which highly depend on substrate thickness, dielectric constant, and radius of the disk patch. By incorporating two pairs of C-slots in optimum geometry on the radiating patch, the proposed antenna operates between 2 and 12 GHz at different frequency bands centered at 2.27, 7.505, 9.34, 10.33, and 11.61 GHz. The other antenna parameters are studied like gain, antenna efficiency, and radiation pattern. The proposed antenna may find applications in S-, C-, and X-band. The results are carried out with the aid of HFSS and MOM-based IE3D simulator. The measured and simulated results are in good agreement with each other.


This paper a compact V- shaped slotted microstrip antenna is designed and utilized in the various communication systems. The most common important parameters are improved .The results of the measured and simulated results for V-slotted microstrip patch antenna has been analyzed . The V slotted patch antenna has been designed to tested in laboratory .The measured and simulated results are exhibits good agreement. The proposed antenna achieved 174MHz of bandwidth at resonance frequency of 2.4 GHz with VSWR ≤ 2. The antenna constructed at centre frequency of 2.44 GHz. The antenna has been designed and simulated using Ansoft HFSS software tools. Then, the antenna parameters are varied in a specific intervals and analysis the designed Patch antenna. Then antenna bandwidth can be enhanced by increasing the substrate thickness. The measured resonant frequency is found 2.592 GHz. The measured value of the bandwidth of the antenna is 75 MHz. Then, the variation of parameters and its performance are investigated.


The circularly polarized microstrip antenna has been of great importance in WLAN applications. A circularly polarized slotted circular patch antenna with co-axial feed geometry has been designed to meet the requirements. The antenna designed has been slotted at several locations to make it radiate circularly polarized radiation. Two metallic cylindrical vias have been inserted near the two diametric ends of the slot to improve the realized gain of the antenna. The antenna structure is resonating at 6.4 GHz with 3dB axial ratio bandwidth of 200MHz and gain of 9.8dB has been observed.


Sign in / Sign up

Export Citation Format

Share Document