scholarly journals Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Vaibhav Rastogi ◽  
Pragya Yadav ◽  
Shiv Sankar Bhattacharya ◽  
Arun Kumar Mishra ◽  
Navneet Verma ◽  
...  

During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review.

2020 ◽  
Vol 11 (03) ◽  
pp. 373-378
Author(s):  
Ashish Suttee ◽  
Vijay Mishra ◽  
Manvendra Singh ◽  
Pallavi Nayak ◽  
Pavani Sriram

Carbon nanotubes (CNTs) have been frequently acquired as one of the fascinating and advanced nanocarriers for drug delivery and many potential applications due to its unique physicochemical properties. During recent years CNTs have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalized with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicity, and drug delivery in tumor cells.


2017 ◽  
Vol 408 ◽  
pp. 164-173 ◽  
Author(s):  
O. Bashari ◽  
B. Redko ◽  
A. Cohen ◽  
G. Luboshits ◽  
G. Gellerman ◽  
...  

2018 ◽  
Vol 5 (7) ◽  
pp. 180320 ◽  
Author(s):  
Duanhua Cai ◽  
Jingqian Fan ◽  
Shibin Wang ◽  
Ruimin Long ◽  
Xia Zhou ◽  
...  

Layer-by-layer (LbL) self-assembly is the technology used in intermolecular static electricity, hydrogen bonds, covalent bonds and other polymer interactions during film assembling. This technology has been widely studied in the drug carrier field. Given their use in drug delivery systems, the biocompatibility of these potential compounds should be addressed. In this work, the primary biocompatibility of poly(lactide-co-glycolide)-(poly-L-orithine/fucoidan) [PLGA-(PLO/fucoidan)] core–shell nanoparticles (NPs) was investigated. Atomic force microscopy revealed the PLGA-(PLO/Fucoidan) 4 NPs to be spherical, with a uniform size distribution and a smooth surface, and the NPs were stable in physiological saline. The residual amount of methylene chloride was further determined by headspace gas chromatography, in which the organic solvent can be volatilized during preparation. Furthermore, cell viability, acridine orange/ethidium bromide staining, haemolysis and mouse systemic toxicity were all assessed to show that PLGA-(PLO/fucoidan) 4 NPs were biocompatible with cells and mice. Therefore, these NPs are expected to have potential applications in future drug delivery systems.


Soft Matter ◽  
2011 ◽  
Vol 7 (8) ◽  
pp. 4062 ◽  
Author(s):  
Mohsen Adeli ◽  
Farahman Hakimpoor ◽  
Masoumeh Ashiri ◽  
Roya Kabiri ◽  
Masoumeh Bavadi

10.14311/1450 ◽  
2011 ◽  
Vol 51 (5) ◽  
Author(s):  
V. Petráková

This paper presents work done on developing optically-traceable intracellular nanodiamond sensors, where the photoluminescence can be changed by a biomolecular attachment/delivery event. Their high biocompatibility, small size and stable luminescence from their color centers make nanodiamond (ND) particles an attractive alternative to molecular dyes for drug-delivery and cell-imaging applications. In our work, we study how surface modification of ND can change the color of ND luminescence (PL). This method can be used as a novel detection tool for remote monitoring of chemical processes in biological systems. Recently, we showed that PL can be driven by atomic functionalization, leading to a change in the color of ND luminescence from red (oxidized ND) to orange (hydrogenated ND). In this work, we show how PL of ND changes similarly when interacting with positively and negatively charged molecules. The effect is demonstrated on fluorinated ND, where the high dipole moment of the C-F bond is favorable for the formation of non-covalent bonds with charged molecules. We model this effect using electrical potential changes at the diamond surface. The final aim of the work is to develop a “smart” optically traceable drug carrier, where the delivery event is optically detectable.


Sign in / Sign up

Export Citation Format

Share Document