scholarly journals Carbon Nanotubes as Emerging Nanocarriers in Drug Delivery: An Overview

2020 ◽  
Vol 11 (03) ◽  
pp. 373-378
Author(s):  
Ashish Suttee ◽  
Vijay Mishra ◽  
Manvendra Singh ◽  
Pallavi Nayak ◽  
Pavani Sriram

Carbon nanotubes (CNTs) have been frequently acquired as one of the fascinating and advanced nanocarriers for drug delivery and many potential applications due to its unique physicochemical properties. During recent years CNTs have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalized with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicity, and drug delivery in tumor cells.

2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Vaibhav Rastogi ◽  
Pragya Yadav ◽  
Shiv Sankar Bhattacharya ◽  
Arun Kumar Mishra ◽  
Navneet Verma ◽  
...  

During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review.


2017 ◽  
Vol 19 (31) ◽  
pp. 20377-20382
Author(s):  
Hang Xiao ◽  
Xiaoyang Shi ◽  
Xi Chen

One-end-open carbon nanotubes with an appropriate radius difference can coaxially self-assemble into a nanocapsule with very high internal pressure (on the order of 1 GPa), underpinning potential applications in nano-reactors, drug-delivery, etc.


NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550010 ◽  
Author(s):  
R. Afshari ◽  
S. Mazinani ◽  
M. Abdouss

Carbon nanotube-natural biopolymer nanovectors have important potential applications in delivery system for drugs and biomolecules. In this work, the use of multi-walled carbon nanotubes (MWCNT) as nanoreservoirs for drug loading and controlled release is demonstrated. We synthesized different carbon nanotube-based drug delivery systems including acid and amide-functionalized MWCNT; chitosan (CS) covalently grafted to functionalized MWCNT and MWCNT-CS nanoparticles (NPs) using an ionotropic gelation method as a sustained-release systems for delivery of Tenofovir (hydrophilic anti-retroviral drug). The prepared NPs as different drug delivery systems were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). As it is shown, in vitro drug release studies indicated that the cumulative release rate of Tenofovir from MWCNT–CS NPs shows the best result and it reaches the maximum value (90%) after about 120 h. Moreover, comparing to ungrafted CNTs, MWCNT–CS shows high dispersability and long-term stability in aqueous medium which approves the effective solubilization of MWCNT followed by grafting with CS.


Soft Matter ◽  
2011 ◽  
Vol 7 (8) ◽  
pp. 4062 ◽  
Author(s):  
Mohsen Adeli ◽  
Farahman Hakimpoor ◽  
Masoumeh Ashiri ◽  
Roya Kabiri ◽  
Masoumeh Bavadi

2021 ◽  
pp. 095400832110171
Author(s):  
Cheng Wang ◽  
Long Fei Zhang ◽  
Wa Li ◽  
Li Rong Yang ◽  
Jia Jun Ma ◽  
...  

Aromatic thermoset materials have shown great potential applications in various fields owing to their excellent mechanical strengths. However, their poor ductility is still hinders their large-scale applications. In this study, a new class of aromatic thermosets consisting of two types of crosslinks was successfully developed by incorporating the special group imidazole into a type of crosslinked thermoset. One crosslink is constituted of reversible multiple noncovalent interactions containing “face-face” π–π stacking, “point-point” hydrogen bonds, and ion-pair electrostatic interactions, whereas the other is composed of permanent covalent bonds. Most importantly, the synergetic interplay among these reversible multiple noncovalent interactions enables them to evade the restrictions from the aromatic polymer skeletons to proceed with their dynamic dissociating-rebuilding processes, which can timely and effectively dissipate the internal stress. Finally, owing to the coefficient of these two types of crosslinks, a significantly enhanced ductility was successfully obtained on these aromatic thermosets and their tensile strengths were also improved. Such thermosets having simultaneously enhanced strengths and ductility are predicted to be eventually used in a wide range of applications.


2018 ◽  
Vol 2 (1) ◽  

During the past years, carbon nanotubes (CNTs) have attracted considerable interest since their first discovery. Great progress has been made in the field of nanomaterials given their great potential in biomedical applications. Carbon nanotubes (CNTs), due to their unique physicochemical properties, have become a popular tool in cancer diagnosis and therapy. They are considered one of the most promising nanomaterials with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to these cells because of the unique structure, extremely high specific surface area to-volume ratio enable them to use in an intense real time applications such as detection and treatment of cancerous cells, nervous disorders, tissue repair. and excellent electrical and mechanical properties carbon nanotubes composed of excellent mechanical strength, electrical and thermal conductivities makes them a suitable substance toward developing medical devices., CNTs have been explored in almost every single cancer treatment modality, including drug delivery with small nanomolecules, lymphatic targeted chemotherapy, thermal therapy, photodynamic therapy, and gene therapy and demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Majority of the biomedical applications of CNTs must be used after successful functionalization for more potential applications than pristine CNTs. There are several approaches to modify pristine CNTs to potentially active. CNTs poised into the human life and exploited in medical context. Here in, we reviewed the following topics (i) Functionalization of CNTs (ii) CNTs in real time applications such as drug delivery, gene therapy, biosensors and bio imaging; (iii) CNTs 3D printed scaffolds for medicine and (iv) Biocompatability and Biodegradability. Single-walled carbon nanotubes (SWCNTs) were synthesized using the high-pressure carbon monoxide disproportionation process (HiPCO). The SWCNT diameter, diameter distribution and yield can be varied depending on the process parameters. The obtained HiPCO product present an iron nanoparticle encapsulated heteronanocarbon (core-shell nanoparticles) at low pressure (1 bar) after removing of iron metal catalyst nanoparticle and amorphous carbon by acid immersion and oxidation. The resulting therapeutic molecule in the form of coreshell nanoparticles and single walled carbon nanotubes after functionalization by filling of iron can be use as therapeutic nanomaterials in nanomedicine in diagnosis and treatment of cancer tumor. This paper describes the synthesis method and role of multifunctional nanoparticle in diagnosis and treatment of cancer. Therefore, the aim of this review is to provide basic information on nanoparticles, describe previously developed methods to functionalize nanoparticles and discuss their potential applications in nanobiomedical and mention the therapeutic nanoparticle large scale production and commercialization challenges. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future carbon nanotubes from synthesis to in vivo biomedical applications.


2016 ◽  
Vol 113 (40) ◽  
pp. 11100-11105 ◽  
Author(s):  
Mingming Zhang ◽  
Shuya Li ◽  
Xuzhou Yan ◽  
Zhixuan Zhou ◽  
Manik Lal Saha ◽  
...  

The covalent linkage of supramolecular monomers provides a powerful strategy for constructing dynamic polymeric materials whose properties can be readily tuned either by the selection of monomers or the choice of functional linkers. In this strategy, the stabilities of the supramolecular monomers and the reactions used to link the monomers are crucial because such monomers are normally dynamic and can disassemble during the linking process, leading to mixture of products. Therefore, although noncovalent interactions have been widely introduced into metallacycle structures to prepare metallosupramolecular polymers, metallacycle-cored polymers linked by covalent bonds have been rarely reported. Herein, we used the mild, highly efficient amidation reaction between alkylamine and N-hydroxysuccinimide-activated carboxylic acid to link the pendent amino functional groups of a rhomboidal metallacycle 10 to give metallacycle-cored polymers P1 and P2, which further yielded nanoparticles at low concentration and transformed into network structures as the concentration increased. Moreover, these polymers exhibited enhanced emission and showed better quantum yields than metallacycle 10 in methanol and methanol/water (1/9, vol/vol) due to the aggregation-induced emission properties of a tetraphenylethene-based pyridyl donor, which serves as a precursor for metallacycle 10. The fluorescence properties of these polymers were further used in cell imaging, and they showed a significant enrichment in lung cells after i.v. injection. Considering the anticancer activity of rhomboidal Pt(II) metallacycles, this type of fluorescent metallacycle-cored polymers can have potential applications toward lung cancer treatment.


RSC Advances ◽  
2018 ◽  
Vol 8 (30) ◽  
pp. 16444-16454 ◽  
Author(s):  
Edyta Niezabitowska ◽  
Jessica Smith ◽  
Mark R. Prestly ◽  
Riaz Akhtar ◽  
Felix W. von Aulock ◽  
...  

Facile route to polymer carbon nanotube nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document