scholarly journals Kinetics of Thermal Degradation of Recycled Polyvinyl Chloride Resin

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
I. M. Alwaan

The goal of this study is to find the effect of time and temperature on the thermal degradation of recycled polyvinyl chloride (PVC) resin. The isothermal rate of reaction(r)of recycled PVC resin was investigated at the following temperatures to: 100, 110, 120, 130, and 140°C at period of times ranging from 10 to 50 min. The result shows that the rate of reaction(r)of recycled PVC increases with increasing temperatures. The reaction rate constant(K)for temperatures ranging from 100 to 140°C was doubled from 0.028–0.056 mol·L−1·S−1. The process was found to be zero order reaction at all range of temperatures 100–140°C. The activation energy of the thermal weight loss was calculated at different temperatures(E/R = 2739.5°K). The average enthalpy and entropy of reaction at temperature of 298°K were determined.

1969 ◽  
Vol 47 (24) ◽  
pp. 4537-4541 ◽  
Author(s):  
R. A. Hasty ◽  
S. L. Sutter

The rate of reaction of methyl iodide with sulfite ion is determined. In addition, the rate of reaction of methyl iodide with thiosulfate ion is reexamined and the rate of reaction of methyl iodide with bisulfite ion is estimated. A pronounced effect of ionic strength on the reaction rate in the methyl iodide – sulfite ion system is observed, this effect does not occur in the methyl iodide – thiosulfate ion system. The second order reaction rate constant and activation energy for the reaction of methyl iodide with the respective nucleophiles are: SO32−, 4.4 × 10−2M−1 s−1, 18.6 kcal mole−1; HSO3−, 1 × 10−3M−1 s−1, 18.4 kcal mole−1; and S2O32− 3.1 × 10−2M−1 s−1, 19.4 kcal mole−1.


2021 ◽  
Vol 21 (4) ◽  
pp. 2563-2567
Author(s):  
Nguyen Hoang Viet ◽  
Pham Ngoc Dieu Quynh ◽  
Nguyen Thi Hoang Oanh

In this work, a mixture of mill scale with 5 wt% molasses as binder was pressed under pressure of 200 MPa to prepare briquettes. The reduction process was performed at the temperature of 1000, 1050, 1100, 1150 and 1200 °C in the bed of A3 fine coal as the reductant. The degree of reduction was evaluated at time duration of 15, 30, 45, 60, 90 and 150 minutes, after the furnace temperature reached the predetermined reduction temperature. The highest reduction degree is 94.7% at the reduction process temperature of 1200 °C. Reaction rate constant (k) increased from 4.63×10-4 to 5.03×10-3 min-1 when the temperature increased from 1000 to 1200 °C. The apparent activation energy of the reduction reaction (Ea) is about 95.6 kJ/mole.


Author(s):  
Mary Kama ◽  
Kaul Gena ◽  
Tindi Seje Nuru

Magnetic skarn ore (MSO) is one of the major copper bearing ore extracted by the Ok Tedi Copper Mine in Papua New Guinea (PNG). Copper minerals are recovered by flotation while the iron not associated with copper are discarded as tailings. The objective of this investigation was to determine the iron ore reduction kinetics for the Ok Tedi MSO and ascertain if it can be processed to produce sponge iron for a mini steel plant in Papua New Guinea. SEM-EDAX analyses of the Ok Tedi MSO indicated 10.1% C, 30% O, 0.6% Mg, 1.1% Si, 21.1% S, 0.8% Ca and 36.2 % Fe. Most of the iron is in sulfide form. Both naturally occurring and roasted sinters of Ok Tedi MSO samples of different particle sizes were reduced by charcoal carbon at three different temperatures and seven different reduction times. Analyses of the reduced products indicated a metallic iron content of more than 65 wt. % on average. Results showed that there was no significant difference in reduction between fluxed and control materials. Only a slight increase in kinetics with reduced particle size, hence the reaction rate constant (K) did not vary much within the temperatures investigated. Reaction kinetics increases with increasing reduction time at 900°C. Therefore, more iron reduction is observed with particles of 106 µm size. In addition, the results also confirmed that the reduction energy used was higher at 800°C and lower at 1000°C. In conclusion, iron reduction can be improved but close monitoring of temperature and reduction times are essential to determine the reaction kinetics of the Ok Tedi MSO.


2000 ◽  
Vol 65 (12) ◽  
pp. 857-866
Author(s):  
Mladjen Micevic ◽  
Slobodan Petrovic

The alcoholysis of 1,2,2-trimethylpropyl-methylfluorophosphonate (soman) was examined with a series of alkoxides and in corresponding alcohols: methanol, ethanol, 1-propanol, 2-propanol, 2-methoxyethanol and 2-ethoxyethanol. Soman reacts with the used alkoxides in a second order reaction, first order in each reactant. The kinetics of the reaction between 1,2,2-trimethylpropyl-methylfluorophosphonate and ethanol in the presence of diethylenetriamine was also examined. A third order reaction rate constant was calculated, first order in each reactant. The activation energy, frequency factor and activation entropy were determined on the basis of the kinetic data.


Author(s):  
K. V. S. KOTESWARA RAO ◽  
R. VENKATA NADH ◽  
K. VENKATA RATNAM

Objective: To study the kinetics of periodate oxidation of polyethylene glycol-600 (PEG-600), a familiar non-toxic polymer used in pharmaceutical and other fields of industry. Methods: Reactions were carried out in alkaline medium and measured the kinetics by iodometry. One oxygen atom loss or two electrons transfer was observed per each molecule of periodate i.e., the rate of reaction was measured periodate converts to iodate because the formed iodate species is unable to oxidize the substrate molecules. Results: Based on log (a-x) versus t plots, order w. r. t. oxidant (periodate) is unity. Reactions were found to be independent of substrate (PEG-600) concentration. A decrease in rate with an increase in alkali concentration [OH–] was found and order was inverse fractional. Temperature dependence of reaction rate was studied and then calculated the corresponding Arrhenius parameters. Conclusion: An appropriate rate law was proposed by considering the above experimental results.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4820 ◽  
Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Aneta Pobudkowska ◽  
Mikołaj Majsterek

The most common cause of diseases in swimming pools is the lack of sanitary control of water quality; water may contain microbiological and chemical contaminants. Among the people most at risk of infection are children, pregnant women, and immunocompromised people. The origin of the problem is a need to develop a system that can predict the formation of chlorine water disinfection by-products, such as trihalomethanes (THMs). THMs are volatile organic compounds from the group of alkyl halides, carcinogenic, mutagenic, teratogenic, and bioaccumulating. Long-term exposure, even to low concentrations of THM in water and air, may result in damage to the liver, kidneys, thyroid gland, or nervous system. This article focuses on analysis of the kinetics of swimming pool water reaction in analytical device reproducing its circulation on a small scale. The designed and constructed analytical device is based on the SIMATIC S7-1200 PLC driver of SIEMENS Company. The HMI KPT panel of SIEMENS Company enables monitoring the process and control individual elements of device. Value of the reaction rate constant of free chlorine decomposition gives us qualitative information about water quality, it is also strictly connected to the kinetics of the reaction. Based on the experiment results, the value of reaction rate constant was determined as a linear change of the natural logarithm of free chlorine concentration over time. The experimental value of activation energy based on the directional coefficient is equal to 76.0 [kJ×mol−1]. These results indicate that changing water temperature does not cause any changes in the reaction rate, while it still affects the value of the reaction rate constant. Using the analytical device, it is possible to constantly monitor the values of reaction rate constant and activation energy, which can be used to develop a new way to assess pool water quality.


2001 ◽  
Vol 56 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Ceyhan Kayran ◽  
Eser Okan

Abstract The kinetics of the thermal substitution of norbornadiene (nbd) by 2,2'-bipyridine (2,2'-bipy) in (CO)4Mo(C7H9) was studied by quantitative FT-IR and UV-VIS spectroscopy. The reaction rate exhibits first-order dependence on the concentration of the starting complex, and the observed rate constant depends on the concentration of both leaving nbd and entering 2,2'-bipy ligand. The mechanism was found to be consistent with the previously proposed one, where the rate determining step is the cleavage of one of the two Mo-olefin bonds. The reaction was performed at four different temperatures (35 -50 °C) and the evaluation of the kinetic data gives the activation parameters which now support states.


1956 ◽  
Vol 34 (4) ◽  
pp. 489-501 ◽  
Author(s):  
M. W. Lister

The reaction between sodium hypochlorite and potassium cyanate in the presence of sodium hydroxide has been examined. The main products are chloride, and carbonate ions and nitrogen; but, especially if much hypochlorite is present, some nitrate is formed as well. The rate of reaction is proportional to the cyanate and hypochlorite concentrations, but inversely proportional to the hydroxide concentration: the rate constant is 5.45 × 10−4 min.−1 at 65 °C, at an ionic strength of 2.2. The rate constant increases somewhat as the ionic strength rises from 1.7 to 3.5. The effect of temperature makes the apparent activation energy 25 kcal./gm-molecule. The kinetics of the reaction suggest that the slow step is really a reaction of hypochlorous acid and cyanate ions, and possible intermediate products of this reaction are suggested. Allowing for the different extent of hydrolysis of hypochlorite at different temperatures, the true activation energy is found to be 15 kcal./gm-mol., which is consistent with the observed rate of reaction.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 553
Author(s):  
Vikneswara A. Shanmugan ◽  
Radin M.S.R. Mohammed ◽  
Amir H.B.M. Kassim ◽  
Adel A.S. Al-Gheethi ◽  
Nur A.A. Latiffi

Disposed meat processing wastewater contains high range of nutrients such as ammonia nitrogen and orthophosphate which will cause eutrophication and lead to destruction of ecosystem. Therefore, batch experiments were conducted to explore the influence of the range of initial concentration of ammonia nitrogen and orthophosphate found in meat processing wastewater in the removal of those nutrients during phycoremediation of synthetic wastewater by using microalgae Botryococcus sp. Michaelis-Menten rate expression was applied to generate biokinetic coefficients k, reaction rate constant, Km, half saturation constant and Y, yield coefficients. The experiment was conducted using synthetic wastewater with initial NH4-N concentration varying between 30-480 mg/l and PO43- concentrations varying between 14-239 mg/l. The results demonstrate removal efficiency of NH4-N between 42-100 % and PO43- between 63-96 %. Biokinetic coefficients were established as k = 1.72 mg NH4-N /mg chl a/day, Km = 52.29 mg/L and YN = 0.027 mg chl a/mg NH4-N for ammonia nitrogen and k = 1.13 mg PO43-/mg chl a/day, Km = 44.45 mg/L and YP = 0.038 mg chl a/mg PO43- for orthophosphate.  


2020 ◽  
Vol 33 (4) ◽  
pp. 495-499
Author(s):  
M. Matsumoto ◽  
Y. Hasegawa

To avoid the use of compounds that burden the environment, a solvent-free enzymatic<br /> reaction was the focus of this study. Investigated were the catalytic activities and kinetics of lipases that were pretreated with carboxylic acids for the solvent-free esterification of propionic acid with isoamyl alcohol. The enhancements of the esterification yields and rates by the bio-imprinting effects of carboxylic acids were observed. We found no inhibition of isoamyl alcohol on the solvent-free enzymatic esterification, and obtained a large imprinting effect under a largely excessive amount of isoamyl alcohol to propionic acid. From the kinetic analysis, the imprinting of lipases mainly enhanced the catalytic reaction rate constant rather than the affinity between lipase and propionic acid compared with untreated lipase. The bio-imprinting treatment of lipase is found to be very effective for the yield and kinetics in solvent-free esterification.


Sign in / Sign up

Export Citation Format

Share Document