Kinetics of the reaction of methyl iodide with sulfite and thiosulfate ions in aqueous solution

1969 ◽  
Vol 47 (24) ◽  
pp. 4537-4541 ◽  
Author(s):  
R. A. Hasty ◽  
S. L. Sutter

The rate of reaction of methyl iodide with sulfite ion is determined. In addition, the rate of reaction of methyl iodide with thiosulfate ion is reexamined and the rate of reaction of methyl iodide with bisulfite ion is estimated. A pronounced effect of ionic strength on the reaction rate in the methyl iodide – sulfite ion system is observed, this effect does not occur in the methyl iodide – thiosulfate ion system. The second order reaction rate constant and activation energy for the reaction of methyl iodide with the respective nucleophiles are: SO32−, 4.4 × 10−2M−1 s−1, 18.6 kcal mole−1; HSO3−, 1 × 10−3M−1 s−1, 18.4 kcal mole−1; and S2O32− 3.1 × 10−2M−1 s−1, 19.4 kcal mole−1.

2000 ◽  
Vol 65 (12) ◽  
pp. 857-866
Author(s):  
Mladjen Micevic ◽  
Slobodan Petrovic

The alcoholysis of 1,2,2-trimethylpropyl-methylfluorophosphonate (soman) was examined with a series of alkoxides and in corresponding alcohols: methanol, ethanol, 1-propanol, 2-propanol, 2-methoxyethanol and 2-ethoxyethanol. Soman reacts with the used alkoxides in a second order reaction, first order in each reactant. The kinetics of the reaction between 1,2,2-trimethylpropyl-methylfluorophosphonate and ethanol in the presence of diethylenetriamine was also examined. A third order reaction rate constant was calculated, first order in each reactant. The activation energy, frequency factor and activation entropy were determined on the basis of the kinetic data.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4820 ◽  
Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Aneta Pobudkowska ◽  
Mikołaj Majsterek

The most common cause of diseases in swimming pools is the lack of sanitary control of water quality; water may contain microbiological and chemical contaminants. Among the people most at risk of infection are children, pregnant women, and immunocompromised people. The origin of the problem is a need to develop a system that can predict the formation of chlorine water disinfection by-products, such as trihalomethanes (THMs). THMs are volatile organic compounds from the group of alkyl halides, carcinogenic, mutagenic, teratogenic, and bioaccumulating. Long-term exposure, even to low concentrations of THM in water and air, may result in damage to the liver, kidneys, thyroid gland, or nervous system. This article focuses on analysis of the kinetics of swimming pool water reaction in analytical device reproducing its circulation on a small scale. The designed and constructed analytical device is based on the SIMATIC S7-1200 PLC driver of SIEMENS Company. The HMI KPT panel of SIEMENS Company enables monitoring the process and control individual elements of device. Value of the reaction rate constant of free chlorine decomposition gives us qualitative information about water quality, it is also strictly connected to the kinetics of the reaction. Based on the experiment results, the value of reaction rate constant was determined as a linear change of the natural logarithm of free chlorine concentration over time. The experimental value of activation energy based on the directional coefficient is equal to 76.0 [kJ×mol−1]. These results indicate that changing water temperature does not cause any changes in the reaction rate, while it still affects the value of the reaction rate constant. Using the analytical device, it is possible to constantly monitor the values of reaction rate constant and activation energy, which can be used to develop a new way to assess pool water quality.


2013 ◽  
Vol 850-851 ◽  
pp. 82-85
Author(s):  
Zuo You Zhang ◽  
Hui Chen ◽  
Xia Li ◽  
Zhao Hui Yang ◽  
Bao Chen Liang

In the presence of an acid catalyst, PG react reversibly with acetaldehyde to form 2,4-dim-ethyl-1,3-dioxolane (24DMD). The effects of different operational parameters on PG conversion had been analyzed in paper, parameters included temperature, reaction time, amount of catalyst and aqueous acetaldehyde/PG molar ratio. Under optimal condition, 85% conversion of PG in aqueous solution was achieved within 180 min of reaction. The analysis of PG was conducted by gas chromatograph. Furthermore, reaction followed the second-order reaction kinetics, and the reaction rate constant was found to be 29.68min-1.


2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.


2017 ◽  
Vol 8 (1) ◽  
pp. 214-222 ◽  
Author(s):  
Zhen Zheng ◽  
Peiyao Chen ◽  
Gongyu Li ◽  
Yunxia Zhu ◽  
Zhonghua Shi ◽  
...  

CBT-Cys click condensation reaction has a high second-order reaction rate constant and has found wide applicability in recent years.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
I. M. Alwaan

The goal of this study is to find the effect of time and temperature on the thermal degradation of recycled polyvinyl chloride (PVC) resin. The isothermal rate of reaction(r)of recycled PVC resin was investigated at the following temperatures to: 100, 110, 120, 130, and 140°C at period of times ranging from 10 to 50 min. The result shows that the rate of reaction(r)of recycled PVC increases with increasing temperatures. The reaction rate constant(K)for temperatures ranging from 100 to 140°C was doubled from 0.028–0.056 mol·L−1·S−1. The process was found to be zero order reaction at all range of temperatures 100–140°C. The activation energy of the thermal weight loss was calculated at different temperatures(E/R = 2739.5°K). The average enthalpy and entropy of reaction at temperature of 298°K were determined.


2002 ◽  
Vol 56 (9) ◽  
pp. 381-385
Author(s):  
Ljubica Pavlovic ◽  
Zagorka Acimovic-Pavlovic ◽  
Ljubisa Andric ◽  
Aurel Prstic

In order to study the kinetics and mechanism of the reaction, laboratory leaching was carried out with industrially produced gibbsite ?-Al(OH)3 in aqueous solutions containing an excess of sodium hydroxide. The results obtained reaction temperature, duration and base concentration varied. The basic kinetic parameters were determined from: the reaction rate constant k=8.72?107 exp (-74990/RT) and the process activation energy in the range Ea=72.5-96.81 kJ/mol.


Author(s):  
Ying Liu ◽  
Mengyu Zhu ◽  
Yadong Hu ◽  
Yijun Zhao ◽  
Chengzhu Zhu

he photochemical reactions between 1-naphthol (1-NP) and superoxide anion radical (O2•−) were investigated in detail by using 365 nm UV irradiation. The results showed that the conversion rate of 1-naphthol decreased with the increase of the initial concentration of 1-naphthol, while the raising pH and riboflavin concentration accelerated the photochemical reaction. The second-order reaction rate constant was estimated to be (3.64 ± 0.17) × 108 L mol−1 s−1. The major photolysis products identified by using gas chromatography-mass spectrum (GC-MS) were 1, 4-naphquinone and 2, 3-epoxyresin-2, 3-dihydro-1, 4-naphquinone, and their reaction pathways were also discussed. An atmospheric model showed that both bulk water reaction and heterogeneous surface reaction deserved attentions in atmospheric aqueous chemistry.


1982 ◽  
Vol 47 (8) ◽  
pp. 2077-2086
Author(s):  
Peter Talán ◽  
Juraj Mucha

Thermodynamics and kinetics of the reaction between thyroxine and antithyroxine antiserum has been studied using the concentration and temperature conditions usual in the radioimmunoanalysis. The reaction is assumed to be homogeneous and of the second order. Because of the initial concentrations of thyroxine and of the free bonds of the heterogeneous population of antibodies present in the used antiserum the rate constant equation for second-order reaction has been used in the integrated form. The relative rate constants have been obtained and the activation energy of the reaction in absence of the serum proteins in the reaction mixture or, respectively, in the presence of the euthyroidic serum has been calculated. The nature of the effect of so-called deblockators (J) (8-anilino-1-naphthalene sulphonic acid and tiomersal) on the reaction rate and on the change of the reaction enthalpy (or entropy) has also been investigated. The association constant of this reaction has been evaluated from the radioimmunoanalytical data transformed by the Scatchard relation, modified for the conditions of thyroxine radioimmunoanalysis.


Author(s):  
Fernando L. Rosario-Ortiz ◽  
Stephen P. Mezyk ◽  
Eric C. Wert ◽  
Devin F. R. Doud ◽  
Manu K. Singh ◽  
...  

AbstractThe effect of ozone oxidation on the second order reaction rate constant between effluent organic matter (EfOM) and hydroxyl radical (


Sign in / Sign up

Export Citation Format

Share Document