scholarly journals Sustainable Design of a Nearly Zero Energy Building Facilitated by a Smart Microgrid

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Gandhi Habash ◽  
Daniel Chapotchkine ◽  
Peter Fisher ◽  
Alec Rancourt ◽  
Riadh Habash ◽  
...  

One of the emerging milestones in building construction is the development of nearly zero energy buildings (NZEBs). This complex concept is defined as buildings that on a yearly average consume as much energy as they generate using renewable energy sources. Realization of NZEBs requires a wide range of technologies, systems, and solutions with varying degrees of complexity and sophistication, depending upon the location and surrounding environmental conditions. This paper will address the role of the above technologies and solutions and discusses the challenges being faced. The objective is to maximize energy efficiency, optimize occupant comfort, and reduce dependency on both the grid and the municipal potable water supply by implementing sustainable strategies in designing a research and sports facility. Creative solutions by the architectural and engineering team capitalize on the design of a unique glazing system; energy efficient technologies; water use reduction techniques; and a combined cooling, heating, and power (CCHP) microgrid (MG) with integrated control aspects and renewable energy sources.

2019 ◽  
Vol 887 ◽  
pp. 148-155
Author(s):  
Paola Penna ◽  
Oscar Stuffer ◽  
Alexandra Troi ◽  
Valentina Carí

What Americas Cup and a heritage building have in common? They both aim at innovative technologies and cutting-edge solutions. The owner of the project, an ex-crew member of the most famous sailing match race in the world, pushed the planning team to develop extraordinary solutions for his house. The house, Villa Castelli, is an historical listed building located on the Como lake. During its history, it has been transformed many times, giving as results a non-uniform structure composed by different construction technologies. The aims of the owner were: an overall refurbishment particularly focused on energy efficiency, the exploitation of renewable energy sources based on-site production and a fixed budget. To reach these goals, the energy needs have been reduced improving the performance of the thermal envelope. Then, the building's technical systems have been re-developed in order to exploit as much as possible available renewable energy sources. From the very beginning, it was clear that, for finding optimal solutions, a multidisciplinary approach was necessary. The design approach should be the result of a shared approach integrating different fields, such as creative design, technology, knowledge of material properties, building physics. The great synergy among building envelope retrofitting, innovative technological solutions and the deployment of renewable energy sources allows the transformation of this historical listed building into an outstanding example of a nearly zero energy building (nZEB).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ardasher Namazbay Yussupov ◽  
Akmaral Ardasherovna Yussupova

PurposeThe purpose of this article discusses the design of underground eco-houses using a dome structure of light construction while taking into account the historical experience of the development of the local population. This article considered the traditions of folk architecture and modern sophistication in the creation of energy-efficient eco-houses in foreign countries in the context of architecture and construction of affordable residential homes for the local population.Design/methodology/approachThe research presented in this paper was motivated by the need for developing agro-tourism facilities in hard-to-reach areas of the Silk Road in Southern Kazakhstan causes the construction of eco-houses built using local construction materials. Since ancient times in Southern Kazakhstan and during seasonal migrations in yurts of light construction, people have lived in mud-brick houses deep in the ground. Along with architectural and artistic solutions in building construction, great importance was attached to saving material resources, labour costs and achieving heat stability of residential buildings.FindingsIn the architectural and planning solution of the eco¬-house, progressive directions of construction of agrotechnical structures using renewable energy sources are adopted. Particular importance was given to the choice of the construction site on an elevated area nearby historical monuments and a favourable season for the construction of eco-houses with considering the natural and climatic characteristics of rural areas of Southern Kazakhstan.Research limitations/implicationsThis paper discussed the issues of insulation, ventilation and improving the eco-house microclimate comfort using local building materials. Improving the architectural and artistic expressiveness of the eco-house in terms of the tradition of folk architecture was also explicitly discussed in this paper.Practical implicationsTables with the justification of expediency of construction of economical eco-houses in natural and climatic conditions of Kazakhstan and Central Asia are provided. The results help to improve the energy efficiency of eco-houses in Kazakhstan by using renewable energy sources.Social implicationsSocial benefits are associated with the use of local raw materials. Eco-houses built from traditional building materials can become accessible to a wide range of people and stimulate the development of small businesses. This may be associated with the construction of eco-houses to serve visiting tourists in remote picturesque oases, as well as the manufacture of dome structures, felt products and the preparation of reed panels and so on.Originality/valueThe thermotechnical characteristics of the region's ground energy are given, which can significantly save the cost of heating the eco-house. Solutions for optimal insolation, ventilation of the eco-house are provided, taking into account the natural and climatic conditions of Southern Kazakhstan.


2019 ◽  
Vol 3 (1) ◽  
pp. 52
Author(s):  
Hala Abdelmoez Mohamed

As the Egyptian population is increasing at a huge rate, the yearly housing demand is increasing in an equivalent rate. In addition, the whole world is suffering from an energy crises caused by the rapidly increasing consumption of world’s traditional energy resources, so the obvious solution is to go green, and depend much more on renewable energy resources. According to the statistical data available in Egyptian governmental authorities, the accumulated housing demand till 2014 was about 2,400,000 units. On the other hand, the yearly housing supply from private and public sectors is about 150,000 to 200,000 unit, Egyptian authorities declared that at summer 2010 air-conditioning devices increased to reach 3.000.000 ( three million) devices all over Egypt, mostly working from early mornings till 2 am next day to adjust temperatures that reach up to (45C) and more outside buildings to reach (25 C) or less inside. This behavior increased electricity consumption rapidly. Consequently, the electricity consumption rate in Egypt had increased by 13% more than 2009, which exceeds the maximum capacity power of the high dam by 7% to 8%, ministry of electricity announcements declared that to fill that gab we need 3000 megawatts at peak hours which costs the electricity sector up to 16.000.000.000 l.E. Accordingly, a new architectural design concept is proposed (Zero-Energy Housing Unit) to rely on the surrounding environmental conditions and new Green Architecture Techniques in order to provide human comfort based on renewable energy sources, provided that the common current governmental energy sources will be a backup system for the meanwhile.


2021 ◽  
Vol 13 (24) ◽  
pp. 13934
Author(s):  
Hanan S. S. Ibrahim ◽  
Ahmed Z. Khan ◽  
Yehya Serag ◽  
Shady Attia

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.


2014 ◽  
Vol 899 ◽  
pp. 46-51
Author(s):  
Milan Bielek ◽  
Boris Bielek ◽  
Juraj Híreš

Transition to a sustainable society. Transforming of the energy market. The social value of CO2 emissions. Development of technology in architecture for a sustainable society. Change of the value system in society. The dominant production technology of the capital of nature with simultaneous ecosystem restoring. Renewable energy sources of predictable and unpredictable type. Renewable energy sources as a conditioning factor of fundamental concept changes of energy quantification of buildings. Requirements for physical quantification of buildings with a zero energy balance in relation to energy distribution networks. Green buildings with zero heat balance of the network - buildings with nearly zero energy balance of the network. Sustainable buildings with zero energy balance of the network. Sustainable building with an active energy balance in relation to distribution networks.


2014 ◽  
Vol 3 (1) ◽  
pp. 83-90
Author(s):  
Sonia Sarapata

Abstract The country’s energy security risk, as well as a desire to protect the environment from the pollution and degradation which are the results of conventional fuels acquisition - these was a motivation for intensive researches on the use of renewable energy sources in eco - innovative installations. Solar radiation is one of the self - renewable energy sources which can be used both as a source of electricity and heat. The area of research is Sosnowiec city located in the south of Poland in the eastern part of Silesia voivodeship. The solar radiation data covering the years 2003 to 2013 was used. The intra - annual variability of daily averaged solar radiation hesitated in a wide range from 0.6 kWh/m2 (December) to 5.2 kWh/m2 (June). Day duration varies on average from 10 hours in January, November and December to 17 hours in May, June and July. Day occupies 56% of the 8767 hours in year. On average the largest amount of energy reached the analyzed area in July: 157 kWh/m2 (15% of the annual average), while the smallest in December: 18 kWh/m2 (less than 2% of the annual average). The 75% of the average annual total of energy falls on the period from 1st March to 31th August (spring - summer). The range of the annual solar radiation was determined by the minimum of 980 kWh/m2 and the maximum of 1094 kWh/m2. In Sosnowiec the average annual irradiation total on the horizontal surface amounts to 1052 kWh/m2 (2003 - 2013)


Author(s):  
Omar Feddaoui ◽  
Riad Toufouti ◽  
Labed Jamel ◽  
Salima Meziane

With a growing demand for more energy from subscribers, a traditional electric grid is unable to meet new challenges, in the remote areas remains the extension of the conventional electric network very hard to do make prohibitively expensive. Therefore, a new advanced generation of traditional electrical is inevitable and indispensable to move toward an efficient, economical, green, clean and self-correcting power system. The most well-known term used to define this next generation power system is Micro Grid (MG) based on renewable energy sources (RES). Since, the energy produced by RES are not constant at all times, a wide range of energy control techniques must be involved to provide a reliable power to consumers. To solve this problem in this paper we present a Fuzzy Logic Control of isolated Hybrid Systems (HRES) Including Renewable Energy in Micro-Grids to maintain a stability in voltage and frequency output especially in the standalone application. The considered HRES combine a wind turbine (WT) and photovoltaic (PV) panels as primary energy sources and an energy storage system (ESS) based on battery as a backup solution. Simulation results obtained from MATLAB/Simulink environment demonstrate the effectiveness of the proposed algorithm in decreasing the electricity bill of customer.


Author(s):  
Yuriy Konstantinovich Knyazev

In Slovenia, there is an urgent problem of limiting the harmful effects of economic activities that deteriorate the living conditions of people, animals and fl ora. The state is taking measures to encourage residents to stay in their home towns and take care of their arrangement and development, the preservation of natural resources and a comfortable environment for people. Numerous public organizations of civil society play an important role in this. This article outlines the features of the modern environmental policy of Slovenia, carried out within the framework of the general line of the European Union, aimed at the phasing out of carbon fuels and the transition to renewable energy sources. The article analyzes Slovenian official documents, setting out the country's environmental strategy, progress in the implementation of plans for energy and climate measures until 2030, the current state of the energy sector and its compliance with the planned tasks. The author's assessment of the efficiency of the environmental policy carried out in Slovenia and its possible results is presented. It is stated that although the indicators of improving the environmental situation are gradually increasing, the emission of harmful gases is decreasing, and the efficiency of the use of energy and raw materials is improving, Slovenia still lags behind the European average in most of these indicators. Meanwhile, it has a relatively high share of renewable energy sources in its total production. This is achieved through budget subsidies for the energy produced from renewable energy sources so that its price does not exceed the market level. Significant monetary resources are spent to apply a wide range of incentive measures. Therefore, the government is forced to seek opportunities to further increase the funding for environmental activities, in particular through European Union funds, including assistance to fight the coronavirus pandemic. English version of the article on pp. 317-324 at URL: https://panor.ru/articles/features-of-the-environmental-policy-in-slovenia/66114.html


2020 ◽  
Vol 10 (8) ◽  
pp. 2739 ◽  
Author(s):  
Nikola Jocić ◽  
Johannes Müller ◽  
Tea Požar ◽  
David Bertermann

Energetic stability is a precondition for a regular functioning of society and economy. Actual climate change raised the awareness of population and policy makers about the importance of exploited energy sources. Renewable energy sources are revealed as the solution which should satisfy both needs—a need for energetic stability, as well as a need for producing ‘clean’ and ‘sustainable’ energy, and therefore reduce humans’ influence on the climate change. Very shallow geothermal energy offers wide range for utilization, among others for heating and cooling living spaces. This article shows potentials of low temperature heating system networks in a small Serbian town of Ub. In addition to technical possibilities, this article combines geographical and social, as well as political and economic circumstances in the town of Ub, which emerge as a result of a complex (post-socialist) transitional vortex.


Sign in / Sign up

Export Citation Format

Share Document