scholarly journals Bipolar Disorder after Stroke in an Elderly Patient

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Raquel Calvão de Melo ◽  
Rui Lopes ◽  
José Carlos Alves

The onset of bipolar disorder (BD) secondary to a stroke event is a rare clinical entity. Although it may be related to specific regions of the brain, several other factors have been linked to its expression such as subcortical atrophy or chronic vascular burden. While precise locations and cerebral circuits involved in the bipolarity expression after stroke still need to be determined, their investigation represents an opportunity to study brain function and BD etiopathogenesis. We present a BD secondary to multiple subcortical biparietal lacunar infarctions, a lacunar infarction in left putamen and an ischemic lesion at the cerebral trunk evolving the right median portion, in a 65-year-old male patient who experienced manic, hypomanic, and depressive episodes, after 6, 10, and 16 months, respectively, of the cerebrovascular events.

2005 ◽  
Vol 16 (4) ◽  
pp. 211-216 ◽  
Author(s):  
Yair Lampl ◽  
Mordechai Lorberboym ◽  
Ronit Gilad ◽  
Mona Boaz ◽  
Menachem Sadeh

Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.


1996 ◽  
Vol 30 (5) ◽  
pp. 688-691 ◽  
Author(s):  
Chia-Yih Liu ◽  
Shuu-Jiun Wang ◽  
Jong-Ling Fuh ◽  
Yong-Yi Yang ◽  
Hsiu-Chih Liu

Objective: Post-stroke mania has rarely been noted and researched, and reported cases have mostly involved the non-dominant hemisphere. In this paper, we report a case of bipolar disorder secondary to a stroke over the dominant hemisphere. Clinical picture: A 48-year-old, right-handed man had a cerebral infarct over the left temporal region. He became depressed after the stroke, and 4 months later developed a manic episode. Treatment: The patient was treated with haloperidol and lorazepam. Outcome: The symptoms subsided within 2 months after treatment. Conclusions: It is premature to consider mania to be a syndrome of the right, or non-dominant, hemisphere. We suggest that further study focusing on specific anatomical regions, rather than laterality, will help to elucidate the interrelationship between mood and brain function.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jingchun Gao ◽  
Canhong Yang ◽  
Qixiong Li ◽  
Lanpin Chen ◽  
Yijing Jiang ◽  
...  

ObjectiveTo explore the different compensatory mechanisms of brain function between the patients with brain dysfunction after acute ischemic stroke (AIS) in the dominant hemisphere and the non-dominant hemisphere based on Resting-state Functional Magnetic Resonance Imaging (Rs-fMRI).MethodsIn this trial, 15 healthy subjects (HS) were used as blank controls. In total, 30 hemiplegic patients with middle cerebral artery acute infarction of different dominant hemispheres were divided into the dominant hemisphere group (DH) and the non-dominant hemisphere group (NDH), scanned by a 3.0 T MRI scanner, to obtain the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) and compare the differences.ResultsCompared with the HS, increased ALFF values in the brain areas, such as the bilateral midbrain, were observed in DH. Meanwhile decreased ReHo values in the brain areas, such as the right postcentral gyrus (BA3), were also observed. Enhanced ALFF values in the brain areas, such as the left BA6, and enhanced ReHo values in the brain areas, such as the left precuneus, were observed in the NDH. The ALFF and ReHo values of the right BA9 and precentral gyrus were both increased. Compared with DH, the NDH group showed lower ALFF values in the left supplementary motor area and lower ReHo values in the right BA10.ConclusionAfter acute infarction in the middle cerebral artery of the dominant hemisphere, a compensation mechanism is triggered in brain areas of the ipsilateral cortex regulating motor-related pathways, while some brain areas related to cognition, sensation, and motor in the contralateral cortex are suppressed, and the connection with the peripheral brain regions is weakened. After acute infarction in the middle cerebral artery of the non-dominant hemisphere, compensatory activation appears in motor control-related brain areas of the dominant hemisphere. After acute middle cerebral artery infarction in the dominant hemisphere, compared with the non-dominant hemisphere, functional specificity in the bilateral supplementary motor area weakens. After acute middle cerebral artery infarction in different hemispheres, there are hemispheric differences in the compensatory mechanism of brain function.


2021 ◽  
Author(s):  
Bernard Marius 't Hart ◽  
Titipat Achakulvisut ◽  
Gunnar Blohm ◽  
Konrad Kording ◽  
Megan A. K. Peters ◽  
...  

Neuromatch Academy (https://neuromatch.io/academy) was designed as an online summer school to cover the basics of computational neuroscience in three weeks. The materials cover dominant and emerging computational neuroscience tools, how they complement one another, and specifically focus on how they can help us to better understand how the brain functions. An original component of the materials is its focus on modeling choices, i.e. how do we choose the right approach, how do we build models, and how can we evaluate models to determine if they provide real (meaningful) insight. This meta-modeling component of the instructional materials asks what questions can be answered by different techniques, and how to apply them meaningfully to get insight about brain function.


2021 ◽  
Vol 13 (1) ◽  
pp. 94-118
Author(s):  
Tian Khusni Akbar ◽  
◽  
Suyadi Suyadi ◽  

This study aims to analyze the design of Islamic educational learning through the art of music, lighting and spatial neuroscience perspectives. This is important because Islamic education has not yet maximized innovative learning methods in using the learning model. This research approach is qualitative type of literature. The data sources of this study are literature in the fields of music, spatial lighting, Islamic education and neuroscience. The collected data is then analyzed qualitatively using inductive thinking patterns. The results showed that the design of learning through music is able to optimize human brain function in both emotions, motivation, to positive actions, because the right and left brains functioning means that the cognitive and psychomotor aspects function optimally. Optimization of lighting in the study room has a great effect on the brain because most of the human brain receives information / knowledge through the human eye. Spatial design in learning is the optimization of the learning room in order to provide a sense of security and comfort in the learning process.


Author(s):  
M. Sato ◽  
Y. Ogawa ◽  
M. Sasaki ◽  
T. Matsuo

A virgin female of the noctuid moth, a kind of noctuidae that eats cucumis, etc. performs calling at a fixed time of each day, depending on the length of a day. The photoreceptors that induce this calling are located around the neurosecretory cells (NSC) in the central portion of the protocerebrum. Besides, it is considered that the female’s biological clock is located also in the cerebral lobe. In order to elucidate the calling and the function of the biological clock, it is necessary to clarify the basic structure of the brain. The observation results of 12 or 30 day-old noctuid moths showed that their brains are basically composed of an outer and an inner portion-neural lamella (about 2.5 μm) of collagen fibril and perineurium cells. Furthermore, nerve cells surround the cerebral lobes, in which NSCs, mushroom bodies, and central nerve cells, etc. are observed. The NSCs are large-sized (20 to 30 μm dia.) cells, which are located in the pons intercerebralis of the head section and at the rear of the mushroom body (two each on the right and left). Furthermore, the cells were classified into two types: one having many free ribosoms 15 to 20 nm in dia. and the other having granules 150 to 350 nm in dia. (Fig. 1).


Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


2020 ◽  
Vol 15 (4) ◽  
pp. 287-299
Author(s):  
Jie Zhang ◽  
Junhong Feng ◽  
Fang-Xiang Wu

Background: : The brain networks can provide us an effective way to analyze brain function and brain disease detection. In brain networks, there exist some import neural unit modules, which contain meaningful biological insights. Objective:: Therefore, we need to find the optimal neural unit modules effectively and efficiently. Method:: In this study, we propose a novel algorithm to find community modules of brain networks by combining Neighbor Index and Discrete Particle Swarm Optimization (DPSO) with dynamic crossover, abbreviated as NIDPSO. The differences between this study and the existing ones lie in that NIDPSO is proposed first to find community modules of brain networks, and dose not need to predefine and preestimate the number of communities in advance. Results: : We generate a neighbor index table to alleviate and eliminate ineffective searches and design a novel coding by which we can determine the community without computing the distances amongst vertices in brain networks. Furthermore, dynamic crossover and mutation operators are designed to modify NIDPSO so as to alleviate the drawback of premature convergence in DPSO. Conclusion: The numerical results performing on several resting-state functional MRI brain networks demonstrate that NIDPSO outperforms or is comparable with other competing methods in terms of modularity, coverage and conductance metrics.


2020 ◽  
Vol 17 (2) ◽  
pp. 110-120
Author(s):  
N.D. Sorokina ◽  
◽  
L.R. Shahalieva ◽  
S.S. Pertsov ◽  
L.V. Polma ◽  
...  

One of the most common causes of chronic pain in the facial region, including in the trigeminal nerve link, which is not associated with dental diseases, is pain dysfunction of the temporomandibular joint. At the same time, there is evidence in the literature that there are relationships between pain dysfunction of the temporomandibular joint, abnormal occlusion, cervical-muscular tonic phenomena, postural disorders, dysfunction of the Autonomous nervous system and cochleovestibular manifestations. At the same time, neurophysiological indicators of functional disorders in the maxillofacial region and intersystem interactions in pain dysfunction of the temporomandibular joint are insufficiently studied.Goal. The aim of the work is to evaluate the neurophysiological features of trigeminal afferentation in terms of trigeminal somatosensory evoked potentials (TSWP) and the auditory conducting system of the brain in terms of acoustic stem evoked potentials (ASVP) in distal occlusion of the dentition with pain dysfunction of the temporomandibular joint (TMJ) in comparison with physiological occlusion in students 18-21 years old. Material and methods. The main study included 41 students with distal occlusion (21 girls and 20 boys), (grade II Engl, symmetrically right and left in 14 people, and grade II Engl on the left and grade I on the right in 12 people, grade I on the left and grade II on the right in 15 people). All respondents with distal occlusion and who were practically healthy signed an informed consent to participate in the study. We used complex orthodontic methods of examination, subjective degree of severity and intensity of pain in the TMJ, assessment of the Autonomous nervous system (samples and tests), and neurophysiological methods for assessing TSVP and ASVP. Results. Significant differences in ASEP parameters were found in the group of respondents with distal occlusion in the form of a decrease in the latency period of peak I, III, and V compared to physiological occlusion, that correlated with the subjective assessment (in points) of cochleovestibular disorders. According to the TSVP study, a decrease in the duration of latent periods was found, which indicates an increased excitability of non-specific brain stem structures at the medullo-ponto-mesencephalic level compared to the control group. Conclusions. The results obtained are supposed to be used for differential diagnostics, including such dental diseases as TMJ pain dysfunction, occlusion abnormalities accompanied by pain syndrome. Additional functional diagnostics of multi-modal VP of the brain (acoustic evoked potentials, trigeminal evoked potentials) can be performed in conjunction with indicators of autonomic nervous system dysfunction, with parameters of severity of clinical symptoms of cochleovestibular disorders, musculoskeletal dysfunction the maxillofacial area, with indicators of pain, which will determine the tactics and effectiveness of subsequent treatment.


Sign in / Sign up

Export Citation Format

Share Document