scholarly journals Next Generation Sequencing: Potential and Application in Drug Discovery

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Navneet Kumar Yadav ◽  
Pooja Shukla ◽  
Ankur Omer ◽  
Shruti Pareek ◽  
R. K. Singh

The world has now entered into a new era of genomics because of the continued advancements in the next generation high throughput sequencing technologies, which includes sequencing by synthesis-fluorescent in situ sequencing (FISSEQ), pyrosequencing, sequencing by ligation using polony amplification, supported oligonucleotide detection (SOLiD), sequencing by hybridization along with sequencing by ligation, and nanopore technology. Great impacts of these methods can be seen for solving the genome related problems of plant and animal kingdom that will open the door of a new era of genomics. This may ultimately overcome the Sanger sequencing that ruled for 30 years. NGS is expected to advance and make the drug discovery process more rapid.

Author(s):  
Ayobami Adesiyan ◽  
Emmanuel Kade ◽  
Iyebeye Ifeakachukwu ◽  
Kafayat Oladimeji ◽  
Kehinde Sowunmi ◽  
...  

The world has now entered into a replacement era of genomics due to the continued advancements within the next generation high throughput sequencing technologies, which incorporates sequencing by synthesis-fluorescent in place sequencing (FISSEQ), pyrosequencing, sequencing by ligation using polony amplification, supported oligonucleotide detection (SOLiD), sequencing by hybridization alongside sequencing by ligation, and nanopore technology. Great impacts of those methods are often seen for solving the genome related problems of plant and Animalia which will open the door of a replacement era of genomics. This might ultimately overcome the Sanger sequencing that ruled for 30 years. NGS is predicted to advance and make the drug discovery process more rapid.


2011 ◽  
Vol 16 (11-12) ◽  
pp. 512-519 ◽  
Author(s):  
Peter M. Woollard ◽  
Nalini A.L. Mehta ◽  
Jessica J. Vamathevan ◽  
Stephanie Van Horn ◽  
Bhushan K. Bonde ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 429 ◽  
Author(s):  
Daniela Barros-Silva ◽  
C. Marques ◽  
Rui Henrique ◽  
Carmen Jerónimo

DNA methylation is an epigenetic modification that plays a pivotal role in regulating gene expression and, consequently, influences a wide variety of biological processes and diseases. The advances in next-generation sequencing technologies allow for genome-wide profiling of methyl marks both at a single-nucleotide and at a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, coverage, and bioinformatics analysis. Thus, the selection of the most feasible method according with the project’s purpose requires in-depth knowledge of those techniques. Currently, high-throughput sequencing techniques are intensively used in epigenomics profiling, which ultimately aims to find novel biomarkers for detection, diagnosis prognosis, and prediction of response to therapy, as well as to discover new targets for personalized treatments. Here, we present, in brief, a portrayal of next-generation sequencing methodologies’ evolution for profiling DNA methylation, highlighting its potential for translational medicine and presenting significant findings in several diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ziga I. Remec ◽  
Katarina Trebusak Podkrajsek ◽  
Barbka Repic Lampret ◽  
Jernej Kovac ◽  
Urh Groselj ◽  
...  

Newborn screening was first introduced at the beginning of the 1960s with the successful implementation of the first phenylketonuria screening programs. Early expansion of the included disorders was slow because each additional disorder screened required a separate test. Subsequently, the technological advancements of biochemical methodology enabled the scaling-up of newborn screening, most notably with the implementation of tandem mass spectrometry. In recent years, we have witnessed a remarkable progression of high-throughput sequencing technologies, which has resulted in a continuous decrease of both cost and time required for genetic analysis. This has enabled more widespread use of the massive multiparallel sequencing. Genomic sequencing is now frequently used in clinical applications, and its implementation in newborn screening has been intensively advocated. The expansion of newborn screening has raised many clinical, ethical, legal, psychological, sociological, and technological concerns over time. This review provides an overview of the current state of next-generation sequencing regarding newborn screening including current recommendations and potential challenges for the use of such technologies in newborn screening.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 596 ◽  
Author(s):  
Shuang Zhou ◽  
Min Gan ◽  
Jianyu Zhu ◽  
Xinxing Liu ◽  
Guanzhou Qiu

It is widely known that bioleaching microorganisms have to cope with the complex extreme environment in which microbial ecology relating to community structure and function varies across environmental types. However, analyses of microbial ecology of bioleaching bacteria is still a challenge. To address this challenge, numerous technologies have been developed. In recent years, high-throughput sequencing technologies enabling comprehensive sequencing analysis of cellular RNA and DNA within the reach of most laboratories have been added to the toolbox of microbial ecology. The next-generation sequencing technology allowing processing DNA sequences can produce available draft genomic sequences of more bioleaching bacteria, which provides the opportunity to predict models of genetic and metabolic potential of bioleaching bacteria and ultimately deepens our understanding of bioleaching microorganism. High-throughput sequencing that focuses on targeted phylogenetic marker 16S rRNA has been effectively applied to characterize the community diversity in an ore leaching environment. RNA-seq, another application of high-throughput sequencing to profile RNA, can be for both mapping and quantifying transcriptome and has demonstrated a high efficiency in quantifying the changing expression level of each transcript under different conditions. It has been demonstrated as a powerful tool for dissecting the relationship between genotype and phenotype, leading to interpreting functional elements of the genome and revealing molecular mechanisms of adaption. This review aims to describe the high-throughput sequencing approach for bioleaching environmental microorganisms, particularly focusing on its application associated with challenges.


2011 ◽  
Vol 152 (2) ◽  
pp. 55-62 ◽  
Author(s):  
Zsuzsanna Mihály ◽  
Balázs Győrffy

In the past ten years the development of next generation sequencing technologies brought a new era in the field of quick and efficient DNA sequencing. In our study we give an overview of the methodological achievements from Sanger’s chain-termination sequencing in 1975 to those allowing real-time DNA sequencing today. Sequencing methods that utilize clonal amplicons for parallel multistrand sequencing comprise the basics of currently available next generation sequencing techniques. Nowadays next generation sequencing is mainly used for basic research in functional genomics, providing quintessential information in the meta-analyses of data from signal transduction pathways, onthologies, proteomics and metabolomics. Although next generation sequencing is yet sparsely used in clinical practice, cardiology, oncology and epidemiology already show an immense need for the additional knowledge obtained by this new technology. The main barrier of its spread is the lack of standardization of analysis evaluation methods, which obscure objective assessment of the results. Orv. Hetil., 2011, 152, 55–62.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Jiajia Chen ◽  
Daqing Zhang ◽  
Wenying Yan ◽  
Dongrong Yang ◽  
Bairong Shen

The discovery of prostate cancer biomarkers has been boosted by the advent of next-generation sequencing (NGS) technologies. Nevertheless, many challenges still exist in exploiting the flood of sequence data and translating them into routine diagnostics and prognosis of prostate cancer. Here we review the recent developments in prostate cancer biomarkers by high throughput sequencing technologies. We highlight some fundamental issues of translational bioinformatics and the potential use of cloud computing in NGS data processing for the improvement of prostate cancer treatment.


2020 ◽  
Vol 16 ◽  
Author(s):  
Pelin Telkoparan-Akillilar ◽  
Dilek Cevik

Background: Numerous sequencing techniques have been progressed since the 1960s with the rapid development of molecular biology studies focusing on DNA and RNA. Methods: a great number of articles, book chapters, websites are reviewed, and the studies covering NGS history, technology and applications to cancer therapy are included in the present article. Results: High throughput next-generation sequencing (NGS) technologies offer many advantages over classical Sanger sequencing with decreasing cost per base and increasing sequencing efficiency. NGS technologies are combined with bioinformatics software to sequence genomes to be used in diagnostics, transcriptomics, epidemiologic and clinical trials in biomedical sciences. The NGS technology has also been successfully used in drug discovery for the treatment of different cancer types. Conclusion: This review focuses on current and potential applications of NGS in various stages of drug discovery process, from target identification through to personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document