scholarly journals Polymer Composites Reinforced by Nanotubes as Scaffolds for Tissue Engineering

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Wang ◽  
Susan Liao ◽  
Ming Liu ◽  
Qian Zhao ◽  
Yuhe Zhu

The interest in polymer based composites for tissue engineering applications has been increasing in recent years. Nanotubes materials, including carbon nanotubes (CNTs) and noncarbonic nanotubes, with unique electrical, mechanical, and surface properties, such as high aspect ratio, have long been recognized as effective reinforced materials for enhancing the mechanical properties of polymer matrix. This review paper is an attempt to present a coherent yet concise review on the mechanical and biocompatibility properties of CNTs and noncarbonic nanotubes/polymer composites, such as Boron nitride nanotubes (BNNTs) and Tungsten disulfide nanotubes (WSNTs) reinforced polymer composites which are used as scaffolds for tissue engineering. We also introduced different preparation methods of CNTs/polymer composites, such as in situ polymerization, solution mixing, melt blending, and latex technology, each of them has its own advantages.

2009 ◽  
Vol 21 (10) ◽  
pp. 2010-2012 ◽  
Author(s):  
J. C. Boyer ◽  
N. J. J. Johnson ◽  
F. C. J. M. van Veggel

2007 ◽  
Vol 42 (12) ◽  
pp. 4183-4190 ◽  
Author(s):  
Yusuf M. Khan ◽  
Emily K. Cushnie ◽  
John K. Kelleher ◽  
Cato T. Laurencin

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Sonia Bujok ◽  
Jiří Hodan ◽  
Hynek Beneš

The high capacity of calcinated layered double hydroxides (LDH) to immobilize various active molecules together with their inherent gas/vapor impermeability make these nanoparticles highly promising to be applied as nanofillers for biodegradable polyester packaging. Herein, trihexyl(tetradecyl)phosphonium decanoate ionic liquid (IL) was immobilized on the surface of calcinated LDH. Thus, the synthesized nanoparticles were used for the preparation of polycaprolactone (PCL)/LDH nanocomposites. Two different methods of nanocomposite preparation were used and compared: microwave-assisted in situ ring opening polymerization (ROP) of ε-caprolactone (εCL) and melt-blending. The in situ ROP of εCL in the presence of LDH nanoparticles with the immobilized IL led to homogenous nanofiller dispersion in the PCL matrix promoting formation of large PCL crystallites, which resulted in the improved mechanical, thermal and gas/water vapor barrier properties of the final nanocomposite. The surface-bonded IL thus acted as nanofiller surfactant, compatibilizer, as well as thermal stabilizer of the PCL/LDH nanocomposites. Contrary to that, the melt-blending caused a partial degradation of the immobilized IL and led to the production of PCL nanocomposites with a heterogenous nanofiller dispersion having inferior mechanical and gas/water vapor barrier properties.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1078 ◽  
Author(s):  
Ji Min ◽  
Madhumita Patel ◽  
Won-Gun Koh

In the field of tissue engineering, conductive hydrogels have been the most effective biomaterials to mimic the biological and electrical properties of tissues in the human body. The main advantages of conductive hydrogels include not only their physical properties but also their adequate electrical properties, which provide electrical signals to cells efficiently. However, when introducing a conductive material into a non-conductive hydrogel, a conflicting relationship between the electrical and mechanical properties may develop. This review examines the strengths and weaknesses of the generation of conductive hydrogels using various conductive materials such as metal nanoparticles, carbons, and conductive polymers. The fabrication method of blending, coating, and in situ polymerization is also added. Furthermore, the applications of conductive hydrogel in cardiac tissue engineering, nerve tissue engineering, and bone tissue engineering and skin regeneration are discussed in detail.


2015 ◽  
Vol 121 (3) ◽  
pp. 1263-1271 ◽  
Author(s):  
Bruno Dufau Mattos ◽  
Pedro Henrique Gonzalez de Cademartori ◽  
Washington Luiz Esteves Magalhães ◽  
Marcelo Lazzarotto ◽  
Darci Alberto Gatto

2010 ◽  
Vol 119 (6) ◽  
pp. 3207-3216 ◽  
Author(s):  
Yong-Feng Li ◽  
Yi-Xing Liu ◽  
Xiang-Ming Wang ◽  
Qing-Lin Wu ◽  
Hai-Peng Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document