scholarly journals MicroRNAs in the DNA Damage/Repair Network and Cancer

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alessandra Tessitore ◽  
Germana Cicciarelli ◽  
Filippo Del Vecchio ◽  
Agata Gaggiano ◽  
Daniela Verzella ◽  
...  

Cancer is a multistep process characterized by various and different genetic lesions which cause the transformation of normal cells into tumor cells. To preserve the genomic integrity, eukaryotic cells need a complex DNA damage/repair response network of signaling pathways, involving many proteins, able to induce cell cycle arrest, apoptosis, or DNA repair. Chemotherapy and/or radiation therapy are the most commonly used therapeutic approaches to manage cancer and act mainly through the induction of DNA damage. Impairment in the DNA repair proteins, which physiologically protect cells from persistent DNA injury, can affect the efficacy of cancer therapies. Recently, increasing evidence has suggested that microRNAs take actively part in the regulation of the DNA damage/repair network. MicroRNAs are endogenous short noncoding molecules able to regulate gene expression at the post-transcriptional level. Due to their activity, microRNAs play a role in many fundamental physiological and pathological processes. In this review we report and discuss the role of microRNAs in the DNA damage/repair and cancer.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 808-808
Author(s):  
Mrinal Y. Shah ◽  
Eva Martinez ◽  
Relja Popovic ◽  
Teresa Ezponda ◽  
Eliza C. Small ◽  
...  

Abstract MMSET/WHSC1 is a histone methyltransferase (HMT) overexpressed in t(4;14)+ multiple myeloma (MM) patients, and is believed to be the driving factor in the pathogenesis of this subtype of MM. Overexpression of MMSET also occurs in solid cancers, including neuroblastoma, colon and prostate. MMSET overexpression in MM and prostate cells leads to an increase in histone 3 lysine 36 dimethylation (H3K36me2), and a decrease in histone 3 lysine 27 trimethylation (H3K27me3). This altered epigenetic landscape is accompanied by changes in proliferation, gene expression, and chromatin accessibility. Prior work linked methylation of histones, including H3K36, to the ability of cells to undergo DNA damage repair. In addition, t(4;14)+ patients frequently relapse after regimens that include DNA damage-inducing agents, suggesting that MMSET might play a role in DNA damage repair and response. To investigate the role of MMSET in DNA damage repair, we transfected U2OS cells with a linearized vector expressing a neomycin-resistant gene. In the presence of G418, only cells that are able to integrate this plasmid through non-homologous end joining (NHEJ) can survive. siRNA knockdown of MMSET led to a decrease in cell survival, suggesting that MMSET is necessary for efficient DNA repair. We also used U2OS cells engineered to express the AsiSI enzyme fused to an estrogen receptor hormone-binding domain. Upon tamoxifen treatment, double strand breaks (DSBs) are induced at multiple AsiSI recognition sites, accompanied by an increase in γH2AX foci. The extent of repair after AsiSI-induced damage was ascertained by the ability of a DNA fragment that spans a specific cut site to be PCR amplified. With MMSET knockdown, there was a >10 fold increase in unrepaired DNA. ChIP analysis showed that with the depletion of MMSET, γH2AX persisted at the cut site. ChIP for specific effectors of DNA damage showed a marked decrease of recruitment of CtIP and RAD51 to the DSB. However, immunoblot analysis showed that CtIP and RAD51 levels were drastically decreased with MMSET depletion, thus explaining the loss of their recruitment to DSBs. In contrast, XRCC4 levels were maintained with MMSET siRNA, but its recruitment to the DSB decreased. CtIP is important for both NHEJ and homologous recombination (HR), RAD51 is critical for HR, and XRCC4 is necessary for NHEJ, suggesting that MMSET is important in multiple pathways of DNA repair. To study the effect of MMSET in MM, we used the t(4;14)+ KMS11 cell line, NTKO, and genetically matched TKO cells in which the overexpressed MMSET allele was knocked out. NTKO cells have elevated levels of DNA damage at baseline, as measured by a comet assay and by the presence of elevated numbers of 53BP1-positive foci. Upon addition of the DNA damaging agent melphalan, NTKO cells showed increased damage as measured by an increase in the tail moment by the comet assay. Paradoxically, upon treatment of these cells with the DNA damaging agents, NTKO cells survived better than TKO cells. NTKO repaired DNA damage at an enhanced rate and continued to proliferate after a significant DNA damage insult, whereas TKO cells accumulated DNA damage and entered cell cycle arrest. We repleted TKO cells with constructs expressing either wild-type MMSET or an HMT-dead (Y1118A) isoform. Upon treatment, cells expressing the wild-type MMSET have showed enhanced DNA repair and continued proliferation after DNA damage, whereas cells expressing the HMT-dead protein repaired DNA damage more slowly and entered cell cycle arrest. The HMT activity of MMSET was critical for the induction of expression of genes required for multiple DNA repair pathways including CHEK2, DDB2, DDIT3, RAD51, and MRE11, again suggesting that MMSET modulates DNA repair by affecting expression of critical components of the repair machinery. The clinical relevance of these finds becomes more apparent in vivo. Luciferase-tagged KMS11 cells harboring doxycycline-inducible MMSET shRNA were injected into nude mice. After one week, mice were treated with doxycycline and injected with melphalan or saline. Knockdown of MMSET or melphalan treatment alone decreased tumor growth but eventually all mice had progressive disease. Only when MMSET was knocked down and chemotherapy given were the mice rendered tumor free. These findings indicate a new mechanism for the ability of MMSET to enhance DNA repair and identify the protein as a potential therapeutic target in MM and other cancers. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 316 (3) ◽  
pp. C299-C311 ◽  
Author(s):  
Jing Luo ◽  
Zhong-Zhou Si ◽  
Ting Li ◽  
Jie-Qun Li ◽  
Zhong-Qiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is known for its high mortality rate worldwide. Based on intensive studies, microRNA (miRNA) expression functions in tumor suppression. Therefore, we aimed to evaluate the contribution of miR-146a-5p to radiosensitivity in HCC through the activation of the DNA damage repair pathway by binding to replication protein A3 (RPA3). First, the limma package of R was performed to differentially analyze HCC expression chip, and regulative miRNA of RPA3 was predicted. Expression of miR-146a-5p, RPA3, and DNA damage repair pathway-related factors in tissues and cells was determined. The effects of radiotherapy on the expression of miR-146a-5p and RPA3 as well as on cell radiosensitivity, proliferation, cell cycle, and apoptosis were also assessed. The results showed that there exists a close correlation between miR-146a and the radiotherapy effect on HCC progression through regulation of RPA3 and the DNA repair pathway. The positive rate of ATM, pCHK2, and Rad51 in HCC tissues was higher when compared with that of the paracancerous tissues. SMMC-7721 and HepG2 cell proliferation were significantly inhibited following 8 Gy 6Mv dose. MiR-146a-5p restrained the expression of RPA3 and promoted the expression of relative genes associated with the DNA repair pathway. In addition, miR-146a-5p overexpression suppresses cell proliferation and enhances radiosensitivity and cell apoptosis in HCC cells. In conclusion, the present study revealed that miR-146a-5p could lead to the restriction of proliferation and the promotion of radiosensitivity and apoptosis in HCC cells through activation of DNA repair pathway and inhibition of RPA3.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 840-840 ◽  
Author(s):  
Danielle N. Yarde ◽  
Lori A. Hazlehurst ◽  
Vasco A. Oliveira ◽  
Qing Chen ◽  
William S. Dalton

Abstract The FA/BRCA pathway is involved in DNA damage repair and its importance in oncogenesis has only recently been implicated. Briefly, 8 FA/BRCA pathway family members facilitate the monoubiquitination of FANCD2. Upon monoubiquitination, FANCD2 translocates to the DNA repair foci where it interacts with other proteins to initiate DNA repair. Previously, we reported that the FA/BRCA pathway is upregulated in multiple myeloma cell lines selected for resistance to melphalan (Chen, et al, Blood 2005). Further, reducing FANCF in the melphalan resistant 8226/LR5 myeloma cell line partially reversed resistance, whereas overexpressing FANCF in the drug sensitive 8226/S myeloma line conferred resistance to melphalan. Others have reported, and we have also verified, that bortezomib enhances melphalan response in myeloma cells; however, the mechanism of enhanced melphalan activity in combination with bortezomib has not been reported. Based on our observation that the FA/BRCA pathway confers melphalan resistance, we hypothesized that bortezomib enhances melphalan response by targeting FA/BRCA DNA damage repair pathway genes. To investigate this hypothesis, we first analyzed FA/BRCA gene expression in 8226/S and 8226/LR5 cells treated with bortezomib, using a customized microfluidic card (to detect BRCA1, BRCA2, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, RAD51 and RAD51C) and q-PCR. Interestingly, we found that low dose (5nM) bortezomib decreased many FA/BRCA pathway genes as early as 2 hours, with maximal decreases seen at 24 hours. Specifically, 1.5- to 2.5-fold decreases in FANCA, FANCC, FANCD2, FANCE and RAD51C were seen 24 hours post bortezomib exposure. Moreover, pre-treatment of myeloma cells with low dose bortezomib followed by melphalan treatment revealed a greater than 2-fold reduction in FANCD2 gene expression levels. We also found that melphalan treatment alone enhanced FANCD2 protein expression and activation (monoubiquitination), whereas the combination treatment of bortezomib followed by melphalan decreased activation and overall expression of FANCD2 protein. Taken together, these results suggest that bortezomib enhances melphalan response in myeloma by targeting the FA/BRCA pathway. Further understanding of the role of the FA/BRCA pathway in determining melphalan response may allow for more customized and effective treatment of myeloma.


2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 308-308
Author(s):  
Talia Golan ◽  
Sharon Halparin ◽  
Chani Stossel ◽  
Maria Raitses-Gurevich ◽  
Dikla Atias ◽  
...  

308 Background: Approximately 15% of PDAC tumors display DNA damage repair (DDR) deficiency. Germline BRCA (gBRCA) mutation serves as a robust biomarker for the DDR deficiency. A subset of patients displays a similar clinical phenotype but lack the gBRCA mutation. Identification of these BRCA-like subset of patients remains a challenge and an alternative approach may include DDR functional assays. Here we suggest loss of the ATM protein as one of the biomarkers for the identification of the DDR deficiency signature in PDAC. Methods: Patients were identified from the Sheba pancreatic cancer database based on strong family/personal history of BRCA- associated cancers or a durable response to platinum containing regimens ( ≥ 6 month) or harboring germline/somatic mutations in the DNA repair pathway (excluding gBRCA mutation). Archival FFPE blocks of primary tumors/metastatic lesions were used to explore ATM protein expression by IHC. Nuclear staining was regarded as positive. Tumor infiltrating lymphocytes served as an internal positive control. ATM loss was defined as less than10% neoplastic nuclear staining at any intensity in the presence of positive lymphocytes staining. Results: We identified 53 patients with DDR deficiency phenotype between 2014-2016 from the Sheba PDAC database (n = 250). Median age at diagnosis was 65 years (46-81) and the majority were female (62%). 47% were diagnosed at stage I/II and 53% stage IV. In the subgroup of patients with DDR deficiency phenotype, 55% displayed a family history of BRCA-associated cancers, 19% had a personal history of malignancy and23% had known mutation in DNA repair pathway. 23/53 identified subjects have been analyzed to date. We identified 52% loss of ATM in the analyzed group (n = 23). Conclusions: Loss of ATM in an unselected PDAC population is 12% (H. Kim et al, 2014). Our data demonstrate that 52% of the highly selected subgroup of PDAC patients (DDR deficiency phenotype) was found to have loss of ATM protein expression, suggesting it to be one of the biomarker for DDR signature. Identification of these patients, based on ATM protein expression profile may lead to personalized treatment options.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 389-389
Author(s):  
Erkut Hasan Borazanci ◽  
Carol Guarnieri ◽  
Susan Haag ◽  
Ronald Lee Korn ◽  
Courtney Edwards Snyder ◽  
...  

389 Background: Molecular analysis has revealed four subtypes of PC giving clinicians further insight into treating this deadly disease. One subtype that was elucidated termed “unstable” is significant for the presence of DNA damage repair deficiency and can be targeted therapeutically. One such therapy, O, from the drug class poly ADP ribose polymerase (PARP) inhibitors, has already been FDA approved for individuals with BRCA mutated ovarian cancers. We performed a retrospective analysis on patients with PC treated at a single institution who have DNA damage repair deficiency mutations and have been treated with O. Methods: A chart review identified pancreatic cancer patients with DNA repair pathway mutations who were treated with O. The primary objective examined ORR in patients with PC with DNA repair mutations receiving O. Secondary objectives included tolerability, overall survival (OS), CA 19-9 change, and changes in quantitative textural analysis (QTA) on CT. Results: 11 individuals were identified, 5 carriers of a pathogenic germline (g) BRCA2 mutation, 1 carrier of a pathogenic g ATM mutation, 1 carrier of a pathogenic g BRCA1 mutation. Variants of uncertain significance (VUS) included 1 g ATM mutation, 1 g PALB2 mutation, 1 somatic (s) C11orf30 mutation, and 1 s BRCA2 mutation. Median age at diagnosis was 59, with 4 M and 7 F. No patients met criteria for familial PC and 7 had a family history consistent for breast and ovarian cancer syndrome. All individuals had metastatic PC and had progressed on at least 1 line of systemic therapy. ORR was 18%. Median time of therapy on O was 5 months (mo) (Range 1.4 to 29.567 mo) with 5 of the individuals still undergoing treatment at the time of analysis. Mean OS was 12.35 mo, 9 of the 11 individuals still alive. QTA of baseline CTs from subjects with liver (8/11) and pancreatic tumors (7/11) revealed a strong association between lesion texture and OS (Pearson correlation coefficient (PCC): hepatic mets = 0.952, p = 0.0003) and time on O (PCC: panc lesions = 0.889, p = 0.006). Conclusions: In individuals with metastatic PC with mutations involved in DNA repair, O may provide clinical benefit. QTA of individual tumors may allow for additional information that predicts outcomes to PARP inhibitors in this population.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3111-3111
Author(s):  
Biswajit Das ◽  
Yvonne A. Evrard ◽  
Li Chen ◽  
Rajesh Patidar ◽  
Tomas Vilimas ◽  
...  

3111 Background: Patient-derived xenografts (PDXs) are increasingly being used in translational cancer research for preclinical drug efficacy studies. The National Cancer Institute (NCI) has developed a Patient-Derived Models Repository (NCI PDMR; pdmr.cancer.gov ) of PDXs with clinical annotation, proteomics, and comprehensive genomic datasets to facilitate these studies. Here, we present an integrative genomic, transcriptomic, and proteomic analysis of critical signaling and DNA damage repair pathways in these PDX models, which represent 9 common and multiple rare tumor histologies. Methods: 304 PDX models from 294 patients were established from various solid tumor histologies from patients with primary or metastatic cancer. Whole Exome Sequencing, RNA-Seq and Reverse Phase Protein Array (RPPA) were performed on 2-9 PDXs per model across multiple passages. An integrative workflow was applied on multiple data sets to detect pathway activation. Results: We profiled 10 signaling and 5 DNA repair pathways in the PDMR dataset. We observed that: (i) a large fraction (40%) of PDX models have at least 1 targetable mutation in the RTK/RAS and/or PIK3CA pathways; (ii) 131 models (45%) have putative driver and oncogenic mutations and copy number variants (CNVs) in the WNT, TGFRb , NRF2 and NOTCH pathways. In addition, 17% of PDX models have targetable mutations in DNA damage repair pathways and 20 PDMR models have a DNA mismatch repair defect (MSI-H). We confirmed activation of the signaling pathways in a subset of PDX models by pathway enrichment analysis on gene expression data from RNASeq and phosphoprotein-specific antibody binding data from RPPA. Activation of DNA repair processes was confirmed by enrichment of relevant mutational signatures and loss of heterozygosity in these PDX models. Conclusions: Genomic analysis of NCI PDMR models revealed that a large fraction have clinically relevant somatic alterations in key signaling and DNA damage repair pathways. Further integrative analyses with matched transcriptomic and proteomic profiles confirmed pathway activation in a subset of these models, which may prioritize them for preclinical drug studies.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1050 ◽  
Author(s):  
Jehad F. Alhmoud ◽  
John F. Woolley ◽  
Ala-Eddin Al Moustafa ◽  
Mohammed Imad Malki

DNA damage is well recognized as a critical factor in cancer development and progression. DNA lesions create an abnormal nucleotide or nucleotide fragment, causing a break in one or both chains of the DNA strand. When DNA damage occurs, the possibility of generated mutations increases. Genomic instability is one of the most important factors that lead to cancer development. DNA repair pathways perform the essential role of correcting the DNA lesions that occur from DNA damaging agents or carcinogens, thus maintaining genomic stability. Inefficient DNA repair is a critical driving force behind cancer establishment, progression and evolution. A thorough understanding of DNA repair mechanisms in cancer will allow for better therapeutic intervention. In this review we will discuss the relationship between DNA damage/repair mechanisms and cancer, and how we can target these pathways.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 305-305
Author(s):  
Timothy F. Donahue ◽  
S. Machele Donat ◽  
Himali Patel ◽  
Joanne F. Chou ◽  
Sharon Bayuga ◽  
...  

305 Background: NMIBC requires lifelong surveillance to monitor for recurrence. Identifying patients at greatest risk and altering surveillance accordingly could impact health care cost. Inadequate DNA repair may increase the risk for developing subsequent tumors. This prospective study evaluated the association between DNA damage/repair capacity and tumor recurrence with the goal of finding new prognostic markers. Methods: Patients newly diagnosed with NMIBC (n=100) who received standard care provided blood samples and completed risk surveys and were followed for a median of 78 mos. DNA damage in peripheral blood lymphocytes measured with the Comet Assay revealed constitutive damage, sensitivity to carcinogens after exposing cells to the tobacco-derived carcinogen BPDE, and repair capacity after allowing cells to repair post BPDE induced damage. DNA damage was expressed as log-transformed Tail Intensity. Median time to recurrence and cumulative incidence of recurrence at 4 mos were estimated by Kaplan-Meier methods and compared by log-rank test. Hazard ratios for recurrence in association with patient characteristics and DNA damage/repair variables were estimated with Cox proportional hazard models. Associations of DNA damage/repair variables between patients’ characteristics were tested with Wilcoxon Rank-Sum. Results: This NMIBC cohort included patients with mean age 64 yrs and 71% males. Tumors were high grade in 74% and multifocal in 34%. Median time to recurrence was 6 months and 42/69 recurrences occurred <4 mos. Patients with higher grade/stage, multifocality, and intravesical therapy had higher cumulative incidence of recurrence at 4 mos (p<0.01). Those with higher stage/grade compared to low stage/grade tumors showed significant reduction in DNA repair capacity after exposure to BPDE (p<0.03). Conclusions: In univariate analysis, DNA damage is associated with higher stage and higher grade tumors; however host DNA damage/repair capacity does not predict recurrence in NMIBC. Traditional disease characteristics including multifocality, high-grade, increasing stage, and intravesical therapy remained predictors of recurrence.


2017 ◽  
Vol 37 (3) ◽  
pp. 413-426 ◽  
Author(s):  
Shir Barshishat ◽  
Maya Elgrably‐Weiss ◽  
Jonathan Edelstein ◽  
Jens Georg ◽  
Sutharsan Govindarajan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document