scholarly journals DNA Damage/Repair Management in Cancers

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1050 ◽  
Author(s):  
Jehad F. Alhmoud ◽  
John F. Woolley ◽  
Ala-Eddin Al Moustafa ◽  
Mohammed Imad Malki

DNA damage is well recognized as a critical factor in cancer development and progression. DNA lesions create an abnormal nucleotide or nucleotide fragment, causing a break in one or both chains of the DNA strand. When DNA damage occurs, the possibility of generated mutations increases. Genomic instability is one of the most important factors that lead to cancer development. DNA repair pathways perform the essential role of correcting the DNA lesions that occur from DNA damaging agents or carcinogens, thus maintaining genomic stability. Inefficient DNA repair is a critical driving force behind cancer establishment, progression and evolution. A thorough understanding of DNA repair mechanisms in cancer will allow for better therapeutic intervention. In this review we will discuss the relationship between DNA damage/repair mechanisms and cancer, and how we can target these pathways.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 183-183
Author(s):  
Yusuke Satoh ◽  
Itaru Matsumura ◽  
Hirokazu Tanaka ◽  
Hironori Harada ◽  
Yuka Harada ◽  
...  

Abstract Abstract 183 RUNX1 transcription factor regulates hematopoietic ontogeny and is a frequent target of gene rearrangements in hematological malignancies. In addition to gene rearrangements, loss-of-function mutations of RUNX1 have been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Mutations of RUNX1 have been detected in about 10–20% patients classified as MDS/AML (high-risk MDS and AML following MDS). Although loss-of-function mutations of RUNX1 cause leukemia together with additional cooperating events in mouse models, the mechanisms, by which impaired RUNX1 functions led to the subsequent genetic alterations, remain unclear. Because DNA damage-repair response has an important role for prevention of many types of tumors, including hematological malignancies, we analyzed the role for RUNX1 in DNA repair system. First, we stably expressed a dominant-negative mutant of RUNX1, RUNX1dC, in a murine myeloid cell line 32Dcl3. RUNX1dC lacks the C-terminal 225 amino acids, which was originally found in a patient with MDS and suppresses functions of wild-type (WT) RUNX1 by inhibiting its DNA binding activity. To analyze the roles for RUNX1 in the DNA repair system, we took advantage of in vitro DNA repair assays with DNA cross-linking agents in 32D-neo and 32D-RUNX1dC cells. Since the cells that recovered from DNA damage make colonies after cisplatin exposure, we can evaluate DNA repair ability of test cells with this assay. As a result, clonogenic ability of 32D-RUNX1dC was significantly decreased by the 2-hour exposure of cisplatin (10nM treatment: 93.4% reduction) compared to that of 32D-neo cell (10nM treatment: 58.6% reduction) (p=0.0006). In addition, 32D-RUNX1dC showed significantly lower clonogenic ability than 32D-neo after exposure to UV-B and gamma-ray, respectively. To evaluate DNA-damage accumulation in 32D-neo and 32D-RUNX1dC cells, we performed immunofluorescent microscopic analysis using monoclonal antibodies for (6–4) photoproducts (6–4 PPs) and cyclobutane pyrimidine dimers (CPDs), which are major products of DNA damage induced by UV-B. These types of DNA lesions are repaired by nucleotide excision repair (NER) system. After six hours from UV-B exposure, both 6–4 PPs and CPDs accumulated in 32D-RUNX1dC cells more abundantly than in 32D-neo cells. These results suggest that RUNX1dC attenuates NER in 32D cells, thereby leading to the sustained accumulations of DNA lesions after exposure to UV-B and cisplatin. To identify the molecule(s) involved in DNA-damage signaling, we profiled expression of 84 genes involved in DNA damage signaling by real-time RT-PCR array. The expression profiling revealed that RUNX1dC repressed Gadd45a, a regulator of NER system in 32D cells. Because genetic alteration of RUNX1 is supposed to occur at a HSC level in MDS and AML, we next evaluated whether RUNX1dC modifies Gadd45 expression in murine Lineage−Sca1+c-Kit+ (LSK) cells. As a result, RUNX1dC-transduced LSK cells showed significantly lower expression of Gadd45a and Gadd45b compared to Mock-transduced LSK cells. Luciferase reporter and chromatin immunoprecipitation assays showed that RUNX1 directly regulates Gadd45a expression via two RUNX1-binding sites neighboring to the p53-binding site in the intron 3 of the human Gadd45a gene. To confirm the roles for endogenous RUNX1 in NER system, we next performed RUNX1-knockdown experiments by short hairpin RNA (shRNA) -mediated gene silencing. RUNX1-shRNA-transduced 32D cells showed significantly lower expression of Gadd45a and Gadd45b than non-silensing-shRNA-transduced 32D cells. As expected, RUNX1-shRNA-transduced 32D cells showed significantly lower clonogenic ability after UV-B exposure than non-silensing-shRNA-transduced 32D cells (p=0.0008). These results suggest that endogenous RUNX1 regulates Gadd45 expression, thereby controlling NER system. Finally, we screened mRNA expression of Gadd45a in the samples from 23 MDS/AML patients, and found that its expression was significantly decreased in MDS/AML patients harboring RUNX1-C-terminal mutation compared to those with WT RUNX1 (p=0.0233). In summary, we here demonstrated that RUNX1 participates in the DNA damage-repair response through transcriptional regulation of Gadd45a. Our study suggests that the impaired RUNX1 function deteriorates NER system and may cause additional mutation(s), which are required for multi-step leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2073
Author(s):  
Beate Köberle ◽  
Sarah Schoch

Cisplatin is one of the most commonly used drugs for the treatment of various solid neoplasms, including testicular, lung, ovarian, head and neck, and bladder cancers. Unfortunately, the therapeutic efficacy of cisplatin against colorectal cancer is poor. Various mechanisms appear to contribute to cisplatin resistance in cancer cells, including reduced drug accumulation, enhanced drug detoxification, modulation of DNA repair mechanisms, and finally alterations in cisplatin DNA damage signaling preventing apoptosis in cancer cells. Regarding colorectal cancer, defects in mismatch repair and altered p53-mediated DNA damage signaling are the main factors controlling the resistance phenotype. In particular, p53 inactivation appears to be associated with chemoresistance and poor prognosis. To overcome resistance in cancers, several strategies can be envisaged. Improved cisplatin analogues, which retain activity in resistant cancer, might be applied. Targeting p53-mediated DNA damage signaling provides another therapeutic strategy to circumvent cisplatin resistance. This review provides an overview on the DNA repair pathways involved in the processing of cisplatin damage and will describe signal transduction from cisplatin DNA lesions, with special attention given to colorectal cancer cells. Furthermore, examples for improved platinum compounds and biochemical modulators of cisplatin DNA damage signaling will be presented in the context of colon cancer therapy.


2019 ◽  
Vol 316 (3) ◽  
pp. C299-C311 ◽  
Author(s):  
Jing Luo ◽  
Zhong-Zhou Si ◽  
Ting Li ◽  
Jie-Qun Li ◽  
Zhong-Qiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is known for its high mortality rate worldwide. Based on intensive studies, microRNA (miRNA) expression functions in tumor suppression. Therefore, we aimed to evaluate the contribution of miR-146a-5p to radiosensitivity in HCC through the activation of the DNA damage repair pathway by binding to replication protein A3 (RPA3). First, the limma package of R was performed to differentially analyze HCC expression chip, and regulative miRNA of RPA3 was predicted. Expression of miR-146a-5p, RPA3, and DNA damage repair pathway-related factors in tissues and cells was determined. The effects of radiotherapy on the expression of miR-146a-5p and RPA3 as well as on cell radiosensitivity, proliferation, cell cycle, and apoptosis were also assessed. The results showed that there exists a close correlation between miR-146a and the radiotherapy effect on HCC progression through regulation of RPA3 and the DNA repair pathway. The positive rate of ATM, pCHK2, and Rad51 in HCC tissues was higher when compared with that of the paracancerous tissues. SMMC-7721 and HepG2 cell proliferation were significantly inhibited following 8 Gy 6Mv dose. MiR-146a-5p restrained the expression of RPA3 and promoted the expression of relative genes associated with the DNA repair pathway. In addition, miR-146a-5p overexpression suppresses cell proliferation and enhances radiosensitivity and cell apoptosis in HCC cells. In conclusion, the present study revealed that miR-146a-5p could lead to the restriction of proliferation and the promotion of radiosensitivity and apoptosis in HCC cells through activation of DNA repair pathway and inhibition of RPA3.


2017 ◽  
Vol 24 (4) ◽  
pp. 580-587 ◽  
Author(s):  
Ben R Hawley ◽  
Wei-Ting Lu ◽  
Ania Wilczynska ◽  
Martin Bushell

Abstract Many surveillance and repair mechanisms exist to maintain the integrity of our genome. All of the pathways described to date are controlled exclusively by proteins, which through their enzymatic activities identify breaks, propagate the damage signal, recruit further protein factors and ultimately resolve the break with little to no loss of genetic information. RNA is known to have an integral role in many cellular pathways, but, until very recently, was not considered to take part in the DNA repair process. Several reports demonstrated a conserved critical role for RNA-processing enzymes and RNA molecules in DNA repair, but the biogenesis of these damage-related RNAs and their mechanisms of action remain unknown. We will explore how these new findings challenge the idea of proteins being the sole participants in the response to DNA damage and reveal a new and exciting aspect of both DNA repair and RNA biology.


2021 ◽  
Vol 10 (3) ◽  
pp. 1444-1456
Author(s):  
Jinghan Shi ◽  
Fujun Yang ◽  
Nanfeng Zhou ◽  
Yan Jiang ◽  
Yanfeng Zhao ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2098 ◽  
Author(s):  
Thom G. A. Reuvers ◽  
Roland Kanaar ◽  
Julie Nonnekens

DNA damage-inducing therapies are of tremendous value for cancer treatment and function by the direct or indirect formation of DNA lesions and subsequent inhibition of cellular proliferation. Of central importance in the cellular response to therapy-induced DNA damage is the DNA damage response (DDR), a protein network guiding both DNA damage repair and the induction of cancer-eradicating mechanisms such as apoptosis. A detailed understanding of DNA damage induction and the DDR has greatly improved our knowledge of the classical DNA damage-inducing therapies, radiotherapy and cytotoxic chemotherapy, and has paved the way for rational improvement of these treatments. Moreover, compounds targeting specific DDR proteins, selectively impairing DNA damage repair in cancer cells, form a promising novel therapy class that is now entering the clinic. In this review, we give an overview of the current state and ongoing developments, and discuss potential avenues for improvement for DNA damage-inducing therapies, with a central focus on the role of the DDR in therapy response, toxicity and resistance. Furthermore, we describe the relevance of using combination regimens containing DNA damage-inducing therapies and how they can be utilized to potentiate other anticancer strategies such as immunotherapy.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kaja Milanowska ◽  
Kristian Rother ◽  
Janusz M. Bujnicki

DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 840-840 ◽  
Author(s):  
Danielle N. Yarde ◽  
Lori A. Hazlehurst ◽  
Vasco A. Oliveira ◽  
Qing Chen ◽  
William S. Dalton

Abstract The FA/BRCA pathway is involved in DNA damage repair and its importance in oncogenesis has only recently been implicated. Briefly, 8 FA/BRCA pathway family members facilitate the monoubiquitination of FANCD2. Upon monoubiquitination, FANCD2 translocates to the DNA repair foci where it interacts with other proteins to initiate DNA repair. Previously, we reported that the FA/BRCA pathway is upregulated in multiple myeloma cell lines selected for resistance to melphalan (Chen, et al, Blood 2005). Further, reducing FANCF in the melphalan resistant 8226/LR5 myeloma cell line partially reversed resistance, whereas overexpressing FANCF in the drug sensitive 8226/S myeloma line conferred resistance to melphalan. Others have reported, and we have also verified, that bortezomib enhances melphalan response in myeloma cells; however, the mechanism of enhanced melphalan activity in combination with bortezomib has not been reported. Based on our observation that the FA/BRCA pathway confers melphalan resistance, we hypothesized that bortezomib enhances melphalan response by targeting FA/BRCA DNA damage repair pathway genes. To investigate this hypothesis, we first analyzed FA/BRCA gene expression in 8226/S and 8226/LR5 cells treated with bortezomib, using a customized microfluidic card (to detect BRCA1, BRCA2, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, RAD51 and RAD51C) and q-PCR. Interestingly, we found that low dose (5nM) bortezomib decreased many FA/BRCA pathway genes as early as 2 hours, with maximal decreases seen at 24 hours. Specifically, 1.5- to 2.5-fold decreases in FANCA, FANCC, FANCD2, FANCE and RAD51C were seen 24 hours post bortezomib exposure. Moreover, pre-treatment of myeloma cells with low dose bortezomib followed by melphalan treatment revealed a greater than 2-fold reduction in FANCD2 gene expression levels. We also found that melphalan treatment alone enhanced FANCD2 protein expression and activation (monoubiquitination), whereas the combination treatment of bortezomib followed by melphalan decreased activation and overall expression of FANCD2 protein. Taken together, these results suggest that bortezomib enhances melphalan response in myeloma by targeting the FA/BRCA pathway. Further understanding of the role of the FA/BRCA pathway in determining melphalan response may allow for more customized and effective treatment of myeloma.


2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 308-308
Author(s):  
Talia Golan ◽  
Sharon Halparin ◽  
Chani Stossel ◽  
Maria Raitses-Gurevich ◽  
Dikla Atias ◽  
...  

308 Background: Approximately 15% of PDAC tumors display DNA damage repair (DDR) deficiency. Germline BRCA (gBRCA) mutation serves as a robust biomarker for the DDR deficiency. A subset of patients displays a similar clinical phenotype but lack the gBRCA mutation. Identification of these BRCA-like subset of patients remains a challenge and an alternative approach may include DDR functional assays. Here we suggest loss of the ATM protein as one of the biomarkers for the identification of the DDR deficiency signature in PDAC. Methods: Patients were identified from the Sheba pancreatic cancer database based on strong family/personal history of BRCA- associated cancers or a durable response to platinum containing regimens ( ≥ 6 month) or harboring germline/somatic mutations in the DNA repair pathway (excluding gBRCA mutation). Archival FFPE blocks of primary tumors/metastatic lesions were used to explore ATM protein expression by IHC. Nuclear staining was regarded as positive. Tumor infiltrating lymphocytes served as an internal positive control. ATM loss was defined as less than10% neoplastic nuclear staining at any intensity in the presence of positive lymphocytes staining. Results: We identified 53 patients with DDR deficiency phenotype between 2014-2016 from the Sheba PDAC database (n = 250). Median age at diagnosis was 65 years (46-81) and the majority were female (62%). 47% were diagnosed at stage I/II and 53% stage IV. In the subgroup of patients with DDR deficiency phenotype, 55% displayed a family history of BRCA-associated cancers, 19% had a personal history of malignancy and23% had known mutation in DNA repair pathway. 23/53 identified subjects have been analyzed to date. We identified 52% loss of ATM in the analyzed group (n = 23). Conclusions: Loss of ATM in an unselected PDAC population is 12% (H. Kim et al, 2014). Our data demonstrate that 52% of the highly selected subgroup of PDAC patients (DDR deficiency phenotype) was found to have loss of ATM protein expression, suggesting it to be one of the biomarker for DDR signature. Identification of these patients, based on ATM protein expression profile may lead to personalized treatment options.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 389-389
Author(s):  
Erkut Hasan Borazanci ◽  
Carol Guarnieri ◽  
Susan Haag ◽  
Ronald Lee Korn ◽  
Courtney Edwards Snyder ◽  
...  

389 Background: Molecular analysis has revealed four subtypes of PC giving clinicians further insight into treating this deadly disease. One subtype that was elucidated termed “unstable” is significant for the presence of DNA damage repair deficiency and can be targeted therapeutically. One such therapy, O, from the drug class poly ADP ribose polymerase (PARP) inhibitors, has already been FDA approved for individuals with BRCA mutated ovarian cancers. We performed a retrospective analysis on patients with PC treated at a single institution who have DNA damage repair deficiency mutations and have been treated with O. Methods: A chart review identified pancreatic cancer patients with DNA repair pathway mutations who were treated with O. The primary objective examined ORR in patients with PC with DNA repair mutations receiving O. Secondary objectives included tolerability, overall survival (OS), CA 19-9 change, and changes in quantitative textural analysis (QTA) on CT. Results: 11 individuals were identified, 5 carriers of a pathogenic germline (g) BRCA2 mutation, 1 carrier of a pathogenic g ATM mutation, 1 carrier of a pathogenic g BRCA1 mutation. Variants of uncertain significance (VUS) included 1 g ATM mutation, 1 g PALB2 mutation, 1 somatic (s) C11orf30 mutation, and 1 s BRCA2 mutation. Median age at diagnosis was 59, with 4 M and 7 F. No patients met criteria for familial PC and 7 had a family history consistent for breast and ovarian cancer syndrome. All individuals had metastatic PC and had progressed on at least 1 line of systemic therapy. ORR was 18%. Median time of therapy on O was 5 months (mo) (Range 1.4 to 29.567 mo) with 5 of the individuals still undergoing treatment at the time of analysis. Mean OS was 12.35 mo, 9 of the 11 individuals still alive. QTA of baseline CTs from subjects with liver (8/11) and pancreatic tumors (7/11) revealed a strong association between lesion texture and OS (Pearson correlation coefficient (PCC): hepatic mets = 0.952, p = 0.0003) and time on O (PCC: panc lesions = 0.889, p = 0.006). Conclusions: In individuals with metastatic PC with mutations involved in DNA repair, O may provide clinical benefit. QTA of individual tumors may allow for additional information that predicts outcomes to PARP inhibitors in this population.


Sign in / Sign up

Export Citation Format

Share Document