scholarly journals Extracting Time-Resolved Information from Time-Integrated Laser-Induced Breakdown Spectra

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Emanuela Grifoni ◽  
Stefano Legnaioli ◽  
Marco Lezzerini ◽  
Giulia Lorenzetti ◽  
Stefano Pagnotta ◽  
...  

Laser-induced breakdown spectroscopy (LIBS) data are characterized by a strong dependence on the acquisition time after the onset of the laser plasma. However, time-resolved broadband spectrometers are expensive and often not suitable for being used in portable LIBS instruments. In this paper we will show how the analysis of a series of LIBS spectra, taken at different delays after the laser pulse, allows the recovery of time-resolved spectral information. The comparison of such spectra is presented for the analysis of an aluminium alloy. The plasma parameters (electron temperature and number density) are evaluated, starting from the time-integrated and time-resolved spectra, respectively. The results are compared and discussed.

2017 ◽  
Vol 35 (1) ◽  
pp. 159-169 ◽  
Author(s):  
H. Iftikhar ◽  
S. Bashir ◽  
A. Dawood ◽  
M. Akram ◽  
A. Hayat ◽  
...  

AbstractThe effect of the transverse magnetic field on laser-induced breakdown spectroscopy and surface modifications of germanium (Ge) has been investigated at various fluences. Ge targets were exposed to Nd: YAG laser pulses (1064 nm, 10 ns, 1 Hz) at different fluences ranging from 3 to 25.6 J/cm2 to generate Ge plasma under argon environment at a pressure of 50 Torr. The magnetic field of strength 0.45 Tesla perpendicular to the direction of plasma expansion was employed by using two permanent magnets. The emission spectra of laser-induced Ge plasma was detected by the laser-induced breakdown spectroscopy system. The electron temperature and number density of Ge plasma are evaluated by using the Boltzmann plot and stark broadening methods, respectively. The variations in emission intensity, electron temperature (Te), and number density (ne) of Germanium plasma are explored at various fluences, with and without employment of the magnetic field. It is observed that the magnetic field is responsible for significant enhancement of both excitation temperature and number density at all fluences. It is revealed that an excitation temperature increases from Te,max,without B = 16,190 to Te,max,with B = 20,123 K. Similarly, the two times enhancement in the electron density is observed from ne,max,without B = 2 × 1018 to ne,max,with B = 4 × 1018 cm−3. The overall enhancement in Ge plasma parameters in the presence of the magnetic field is attributed to the Joule heating effect and adiabatic compression. With increasing fluence both plasma parameters increase and achieve their maxima at a fluence of 12.8 J/cm2 and then decrease. In order to correlate the plasma parameters with surface modification, scanning electron microscope analysis of irradiated Ge was performed. Droplets and cones are formed for both cases. However, the growth of ridges and distinctness of features is more pronounced in case of the absence of the magnetic field; whereas surface structures become more diffusive in the presence of the magnetic field.


1996 ◽  
Vol 50 (12) ◽  
pp. 1483-1499 ◽  
Author(s):  
Rosalie A. Multari ◽  
Leeann E. Foster ◽  
David A. Cremers ◽  
Monty J. Ferris

In laser-induced breakdown spectroscopy (LIBS), a focused laser pulse is used to ablate material from a surface and form a laser plasma that excites the vaporized material. Geometric factors, such as the distance between the sample and the focusing lens and the method of collecting the plasma light, can greatly influence the analytical results. To obtain the best quantitative results, one must consider this geometry. Here we report the results of an investigation of the effect of sampling geometry on LIBS measurements. Diagnostics include time-resolved spectroscopy and temporally and spectrally resolved imaging using an acousto-optic tunable filter (AOTF). Parameters investigated include the type of lens (cylindrical or spherical) used to focus the laser pulse onto the sample, the focal length of the lens (75 or 150 mm), the lens-to-sample distance (LTSD), the angle-of-incidence of the laser pulse onto the sample, and the method used to collect the plasma light (lens or fiber-optic bundle). From these studies, it was found that atomic emission intensities, plasma temperature, and mass of ablated material depend strongly on the LTSD for both types of lenses. For laser pulse energies above the breakdown threshold for air, these quantities exhibit symmetric behavior about an LTSD approximately equal to the back focal length for cylindrical lenses and asymmetric behavior for spherical lenses. For pulse energies below the air breakdown threshold, results obtained for both lenses display symmetric behavior. Detection limits and measurement precision for the elements Be, Cr, Cu, Mn, Pb, and Sr, determined with the use of 14 certified reference soils and stream sediments, were found to be independent of the lens used. Time-resolved images of the laser plasma show that at times >5 μs after plasma formation a cloud of emitting atoms extends significantly beyond the centrally located, visibly white, intense plasma core present at early times (<0.3 μs). It was determined that, by collecting light from the edges of the emitting cloud, one can record spectra using an ungated detector (no time resolution) that resemble closely the spectra obtained from a gated detector providing time-resolved detection. This result has implications in the development of less expensive LIBS detection systems.


1992 ◽  
Vol 46 (9) ◽  
pp. 1382-1387 ◽  
Author(s):  
J. A. Aguilera ◽  
C. Aragón ◽  
J. Campos

Laser-induced breakdown spectroscopy has been used to determine carbon content in steel. The plasma was formed by focusing a Nd:YAG laser on the sample surface. With the use of time-resolved spectroscopy and generation of the plasma in nitrogen atmosphere, a precision of 1.6% and a detection limit of 65 ppm have been obtained. These values are similar to those of other accurate conventional techniques. Matrix effects for the studied steels are reduced to a small slope difference between the calibration curves for stainless and nonstainless steels.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Abdolhamed Shahedi ◽  
Esmaeil Eslami ◽  
Mohammad Reza Nourani

This study is devoted to tracing and identifying the elements available in bone sample using Laser-Induced Breakdown Spectroscopy (LIBS). The bone samples were prepared from the thigh of laboratory rats, which consumed 325.29 g/mol lead acetate having 4 mM concentration in specified time duration. About 76 atomic lines have been analyzed and we found that the dominant elements are Ca I, Ca II, Mg I, Mg II, Fe I, and Fe II. Temperature curve and bar graph were drawn to compare bone elements of group B which consumed lead with normal group, group A, in the same laboratory conditions. Plasma parameters including plasma temperature and electron density were determined by considering Local Thermodynamic Equilibrium (LTE) condition in the plasma. An inverse relationship has been detected between lead absorption and elements like Calcium and Magnesium absorption comparing elemental values for both the groups.


2021 ◽  
Vol 19 (10) ◽  
pp. 01-07
Author(s):  
M.H. Asmaa ◽  
Sami A. Habana

Electron thickness and temperature of laser prompted Iron plasma boundaries, among different boundaries, were estimated. Plasma was delivered through the connection of high pinnacle power Nd: YAG laser at the key frequency of 1064 nm with a pellet target contains a limited quantity of lipstick from nearby business sectors. Lines from Fe II at 238.502 nm, Fe II at 254.904 nm, Fe II at 262.370 nm, Fe II at 286.545 nm and Fe I at 349.779 nm were utilized to assess the plasma boundaries. The current investigation was completed to assess electron temperature (Te), electron thickness (ne), plasma recurrence, Debye length and Debye number (ND). Laser-incited breakdown spectroscopy LIBS method was used for examining and deciding ghastly discharge lines. ID of change lines from all spectra was completed by contrasting ghostly lines and NIST nuclear data set.


2007 ◽  
Vol 62 (12) ◽  
pp. 1329-1334 ◽  
Author(s):  
Matthieu Baudelet ◽  
Myriam Boueri ◽  
Jin Yu ◽  
Samuel S. Mao ◽  
Vincent Piscitelli ◽  
...  

AIP Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 065214 ◽  
Author(s):  
Kaimin Guo ◽  
Anmin Chen ◽  
Wanpeng Xu ◽  
Dan Zhang ◽  
Mingxing Jin

Sign in / Sign up

Export Citation Format

Share Document