scholarly journals The Role ofHelicobacter pyloriSeropositivity in Insulin Sensitivity, Beta Cell Function, and Abnormal Glucose Tolerance

Scientifica ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lou Rose Malamug ◽  
Rudruidee Karnchanasorn ◽  
Raynald Samoa ◽  
Ken C. Chiu

Infection, for example,Helicobacter pylori(H. pylori), has been thought to play a role in the pathogenesis of type 2 diabetes mellitus (T2DM). Our aim was to determine the role ofH. pyloriinfection in glucose metabolism in an American cohort. We examined data from 4,136 non-Hispanic white (NHW), non-Hispanic black (NHB), and Mexican Americans (MA) aged 18 and over from the NHANES 1999-2000 cohort. We calculated the odds ratios for states of glucose tolerance based on theH. pyloristatus. We calculated and compared homeostatic model assessment insulin resistance (HOMA-IR) and beta cell function (HOMA-B) in subjects without diabetes based on theH. pyloristatus. The results were adjusted for age, body mass index (BMI), poverty index, education, alcohol consumption, tobacco use, and physical activity. TheH. pyloristatus was not a risk factor for abnormal glucose tolerance. After adjustment for age and BMI and also adjustment for all covariates, no difference was found in either HOMA-IR or HOMA-B in all ethnic and gender groups except for a marginally significant difference in HOMA-IR in NHB females.H. pyloriinfection was not a risk factor for abnormal glucose tolerance, nor plays a major role in insulin resistance or beta cell dysfunction.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A319-A320
Author(s):  
Vishwanath Pattan ◽  
Maria Chang Villacreses ◽  
Rudruidee Karnchanasorn ◽  
Wei Feng ◽  
Raynald Samoa ◽  
...  

Abstract Trace element is essential for the proper growth, development, and physiology of the organism and the primary source of trace element is dietary intake. Among trace elements, the role of copper (Cu), selenium (Se), and zinc (Zn) in the pathogenesis of diabetes have been widely recognized. However, there is little information available about these 3 trace elements across the different states of glucose tolerance. We examined associations between serum levels of trace elements - Cu, Zn, and Se with various stages of glucose tolerance in a representative, cross-sectional sample of US adults. Our sample included 5,087 adults (≥20 years) with available serum concentrations of Cu, Zn and Se as well as states of glucose tolerance, defined by history, HbA1c, fasting, and 2-hour plasma glucose concentrations. Serum concentrations of trace elements were compared with glucose tolerance status with the consideration of covariates. Regression analyses was used to examine the relationship of trace elements with HOMA-IR, HOMA-B, and BMI in non-diabetic subjects with the consideration of appropriate covariates. Serum Se (P<0.0001) and Zn (P<0.0001) concentrations differed significantly among 3 groups based on the states of glucose tolerance, while no difference was noted in serum Cu concentration. In non-diabetic subjects, serum Cu concentration was positively correlated with BMI (P<0.0001) with a possible compensatory increased beta cell function (P=0.018). Serum Se concentration was negatively correlated with insulin resistance (P=0.016) but not with beta cell function or BMI. Serum Zn concertation was negatively correlated with beta cell function (P=0.0023) and BMI (P=0.018), but not with insulin resistance. We found that a higher serum concentration of trace elements was associated with negative glucose and fuel homeostasis in a non-deficiency population possibly through different mechanisms. Although the casual relationship remains to be elucidated, we recommend against trace element supplementation in a non-deficiency population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Liu ◽  
Yang Liu ◽  
Hongzhong Liu ◽  
Haiyan Li ◽  
Jianhong Yang ◽  
...  

ObjectsImigliptin is a novel dipeptidyl peptidase-4 inhibitor. In the present study, we aimed to evaluate the effects of imigliptin and alogliptin on insulin resistance and beta-cell function in Chinese patients with type-2 diabetes mellitus (T2DM).MethodsA total of 37 Chinese T2DM patients were randomized to receive 25 mg imigliptin, 50 mg imigliptin, placebo, and 25 mg alogliptin (positive drug) for 13 days. Oral glucose tolerance tests were conducted at baseline and on day 13, followed by the oral minimal model (OMM).ResultsImigliptin or alogliptin treatment, compared with their baseline or placebo, was associated with higher beta-cell function parameters (φs and φtot) and lower glucose area under the curve (AUC) and postprandial glucose levels. The changes in the AUC for the glucose appearance rate between 0 and 120 min also showed a decrease in imigliptin or alogliptin groups. However, the insulin resistance parameter, fasting glucose, was not changed. For the homeostatic model assessment (HOMA-β and HOMA-IR) parameters or secretory units of islets in transplantation index (SUIT), no statistically significant changes were found both within treatments and between treatments.ConclusionsAfter 13 days of treatment, imigliptin and alogliptin could decrease glycemic levels by improving beta-cell function. By comparing OMM with HOMA or SUIT results, glucose stimulation might be more sensitive for detecting changes in beta-cell function.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1783
Author(s):  
Sohyae Lee ◽  
Jin-young Min ◽  
Kyoung-bok Min

The relationship between caffeine and insulin resistance (IR) has been assessed only in terms of caffeine intake, and the association between caffeine and beta cell function (BCF) remains unclear. This study examines the association between urinary caffeine and its metabolites, IR, and BCF in nondiabetic, noninstitutionalized US adults in order to account for the inter-individual differences in caffeine metabolism. Data on urinary caffeine and its metabolites, IR and BCF from adults aged 20 years and older who participated in the 2009–2010 and 2011–2012 National Health and Nutrition Examination Surveys were analyzed (n for caffeine = 994). IR and BCF were assessed using homeostatic model assessment (HOMA) and urinary caffeine and its metabolites were measured using high-performance liquid chromatography-electrospray ionization-tandem quadrupole mass spectrometry. After adjusting for all covariates, increases in urinary 1,3-DMU, 1,7-DMU, 1,3,7-TMU, theophylline, paraxanthine, caffeine, and AAMU were significantly associated with increased HOMA-IR and HOMA-β (HOMA of insulin resistance and beta cell function). Compared with individuals in the lowest quartile of urinary 1,3-DMU, 1,7-DMU, 1,3,7-TMU, theophylline, paraxanthine, caffeine, and AAMU, the regression coefficients for HOMA-IR and HOMA-β were significantly higher among those in the highest quartile. After stratification by prediabetes status, HOMA-IR and HOMA-β showed significant positive associations with urinary caffeine and its metabolites among subjects with normal fasting plasma glucose levels. Our cross-sectional study showed that caffeine and its metabolites were positively related to IR and BCF.


2021 ◽  
Author(s):  
Rong Huang ◽  
Yu Dong ◽  
Anne Monique Nuyt ◽  
Emile Levy ◽  
Shu-Qin Wei ◽  
...  

Objective: Large birth size programs an elevated risk of type 2 diabetes in adulthood, but data are absent concerning glucose metabolic health impact in infancy. We sought to determine whether large birth size is associated with insulin resistance and β-cell function in infancy, and evaluate the determinants. Design and Participants: In the Canadian 3D birth cohort, we conducted a nested matched (1:2) study of 70 large-for-gestational-age (LGA, birth weight >90th percentile) and 140 optimal-for-gestational-age (OGA, 25th-75th percentiles) control infants. The primary outcomes were homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-β) at age 2-years. Results: HOMA-IR and HOMA-β were similar in LGA and OGA infants. Adjusting for maternal and infant characteristics, decelerated growth in length during early infancy (0-3 months) was associated a 25.8% decrease (95% confidence intervals 6.7-41.0%) in HOMA-β. During mid-infancy (3-12 months), accelerated growth in weight was associated with a 25.5% (0.35-56.9%) increase in HOMA-IR, in length with a 69.3% increase (31.4-118.0%) in HOMA-IR and a 24.5% (0.52-54.3%) increase in HOMA-β. Decelerated growth in length during late infancy (1-2 years) was associated with a 28.4% (9.5-43.4%) decrease in HOMA-IR and a 21.2% (3.9-35.4%) decrease in HOMA-β. Female sex was associated with higher HOMA-β, Caucasian ethnicity with lower HOMA-IR, and maternal smoking with lower HOMA-β. Conclusions: The study is the first to demonstrate that large birth size is not associated with insulin resistance and β-cell function in infancy, but infancy growth pattern matters. Decelerated infancy growth may be detrimental to beta-cell function.


2004 ◽  
pp. 97-104 ◽  
Author(s):  
B Ahren ◽  
G Pacini

Insulin sensitivity and insulin secretion are mutually related such that insulin resistance is compensated by increased insulin secretion. A correct judgement of insulin secretion therefore requires validation in relation to the insulin sensitivity in the same subject. Mathematical analyses of the relationship between insulin sensitivity and insulin secretion has revealed a hyperbolic function, such that the product of the two variables is constant. This product is usually called the disposition index. Several techniques may be used for its estimation such as data derived from the frequently sampled i.v. glucose tolerance test, the oral glucose tolerance test or the glucose-dependent arginine stimulation test or the euglycemic hyperinsulinemic clamp technique in combination with a test on insulin secretion. Using these techniques the compensatory increase in beta cell function in insulin resistance has been verified in obesity, in pregnancy and after glucocorticoid administration as has the defective beta cell function as the underlying cause of impaired glucose tolerance and type 2 diabetes. Similarly, combined analysis of insulin sensitivity and insulin secretion has shown a down-regulation of beta cell function in increased insulin sensitivity accompanying weight reduction in obesity and following exercise. Acknowledging this inverse relationship between insulin secretion and insulin sensitivity therefore requires estimation of both variables for correct assessment in any individual.


Sign in / Sign up

Export Citation Format

Share Document