scholarly journals Identification of Synchronized Role of Transcription Factors, Genes, and Enzymes in Arabidopsis thaliana under Four Abiotic Stress Responsive Pathways

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Samsad Razzaque ◽  
Rabab Mahdi ◽  
Aparna Islam

Microarray datasets are widely used resources to predict and characterize functional entities of the whole genomics. The study initiated here aims to identify overexpressed stress responsive genes using microarray datasets applying in silico approaches. The target also extended to build a protein-protein interaction model of regulatory genes with their upstream and downstream connection in Arabidopsis thaliana. Four microarray datasets generated treating abiotic stresses like salinity, cold, drought, and abscisic acid (ABA) were chosen. Retrieved datasets were firstly filtered based on their expression comparing to control. Filtered datasets were then used to create an expression hub. Extensive literature mining helped to identify the regulatory molecules from the expression hub. The study brought out 42 genes/TF/enzymes as the role player during abiotic stress response. Further bioinformatics study and also literature mining revealed that thirty genes from those forty-two were highly correlated in all four datasets and only eight from those thirty genes were determined as highly responsive to the above abiotic stresses. Later their protein-protein interaction (PPI), conserved sequences, protein domains, and GO biasness were studied. Some web based tools and software like String database, Gene Ontology, InterProScan, NCBI BLASTn suite, etc. helped to extend the study arena.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ching-Yu Shen ◽  
You-Yi Chen ◽  
Ke-Wei Liu ◽  
Hsiang-Chia Lu ◽  
Song-Bin Chang ◽  
...  

AbstractThe ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.


2021 ◽  
Author(s):  
Kaho Suzuki ◽  
Yousuke Takaoka ◽  
Minoru Ueda

A rationally designed stapled JAZ peptide selectively inhibited MYCs, master-regulators of the jasmonate signaling in Arabidopsis thaliana. It is proposed as a novel chemical tool for the analysis of MYC related jasmonate signaling.


2019 ◽  
Author(s):  
Runsheng Ren ◽  
Xingping Yang ◽  
Jinhua Xu ◽  
Man Zhang ◽  
Guang Liu ◽  
...  

Abstract Background The GDSL esterase and lipase families play important roles in abiotic stress, pathogen defense, seed development and lipid metabolism. Identifying the lipase activity of a putative GDSL lipase is necessary to determine its function. Systematic analysis of the GDSL gene family is still lacking in Citrullus lanatus. Results In this study, we identified 65 watermelon GDSL-type esterase/lipase genes and divided these genes into 6 clades based on phylogeny. The phylogenetic relationship of watermelon GDSL genes compared with Arabidopsis thaliana GDSL esterases/lipases was also determined, and these genes were divided into four groups related to morphological development, abiotic stress response, pathogen defense, and secondary metabolism. The chromosomal location of these genes revealed that they are distributed unevenly across all 11 watermelon chromosomes. Analysis of duplication events suggested that segmental duplication and tandem duplication were the major driving forces of GDSL family evolution. Synteny analysis indicated that GDSLs in watermelon were highly homologous to those in Arabidopsis thaliana, melon and cucumber. Transcriptome analyses showed the tissue-specific and common expression of the GDSL genes in leaf and root tissues and identified nitrogen-related genes under low nitrogen (N) stress compared with optimal N conditions. Conclusions Our results provide a basis for selecting candidate watermelon GDSL genes for further studies to determine the biological functions of the GDSL genes in watermelon.


Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


2016 ◽  
Vol 92 (1-2) ◽  
pp. 105-116 ◽  
Author(s):  
Hong Li ◽  
Shiping Yang ◽  
Chuan Wang ◽  
Yuan Zhou ◽  
Ziding Zhang

2011 ◽  
Vol 62 (8) ◽  
pp. 2679-2689 ◽  
Author(s):  
Kanishka de Silva ◽  
Bozena Laska ◽  
Christopher Brown ◽  
Heike Winter Sederoff ◽  
Mariya Khodakovskaya

2018 ◽  
Vol 9 ◽  
Author(s):  
Karina L. Lopes ◽  
Ricardo A. O. Rodrigues ◽  
Marcos C. Silva ◽  
Wiliane G. S. Braga ◽  
Marcio C. Silva-Filho

Sign in / Sign up

Export Citation Format

Share Document