scholarly journals Intelligent CAD System for Automatic Detection of Mitotic Cells from Breast Cancer Histology Slide Images Based on Teaching-Learning-Based Optimization

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ramin Nateghi ◽  
Habibollah Danyali ◽  
Mohammad Sadegh Helfroush ◽  
Ashkan Tashk

This paper introduces a computer-assisted diagnosis (CAD) system for automatic mitosis detection from breast cancer histopathology slide images. In this system, a new approach for reducing the number of false positives is proposed based on Teaching-Learning-Based optimization (TLBO). The proposed CAD system is implemented on the histopathology slide images acquired by Aperio XT scanner (scanner A). In TLBO algorithm, the number of false positives (falsely detected nonmitosis candidates as mitosis ones) is defined as a cost function and, by minimizing it, many of nonmitosis candidates will be removed. Then some color and texture (textural) features such as those derived from cooccurrence and run-length matrices are extracted from the remaining candidates and finally mitotic cells are classified using a specific support vector machine (SVM) classifier. The simulation results have proven the claims about the high performance and efficiency of the proposed CAD system.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6201 ◽  
Author(s):  
Dina A. Ragab ◽  
Maha Sharkas ◽  
Stephen Marshall ◽  
Jinchang Ren

It is important to detect breast cancer as early as possible. In this manuscript, a new methodology for classifying breast cancer using deep learning and some segmentation techniques are introduced. A new computer aided detection (CAD) system is proposed for classifying benign and malignant mass tumors in breast mammography images. In this CAD system, two segmentation approaches are used. The first approach involves determining the region of interest (ROI) manually, while the second approach uses the technique of threshold and region based. The deep convolutional neural network (DCNN) is used for feature extraction. A well-known DCNN architecture named AlexNet is used and is fine-tuned to classify two classes instead of 1,000 classes. The last fully connected (fc) layer is connected to the support vector machine (SVM) classifier to obtain better accuracy. The results are obtained using the following publicly available datasets (1) the digital database for screening mammography (DDSM); and (2) the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). Training on a large number of data gives high accuracy rate. Nevertheless, the biomedical datasets contain a relatively small number of samples due to limited patient volume. Accordingly, data augmentation is a method for increasing the size of the input data by generating new data from the original input data. There are many forms for the data augmentation; the one used here is the rotation. The accuracy of the new-trained DCNN architecture is 71.01% when cropping the ROI manually from the mammogram. The highest area under the curve (AUC) achieved was 0.88 (88%) for the samples obtained from both segmentation techniques. Moreover, when using the samples obtained from the CBIS-DDSM, the accuracy of the DCNN is increased to 73.6%. Consequently, the SVM accuracy becomes 87.2% with an AUC equaling to 0.94 (94%). This is the highest AUC value compared to previous work using the same conditions.


2018 ◽  
Vol 2 (3) ◽  
pp. 245-254 ◽  
Author(s):  
Chebbah Nabil Karim ◽  
Ouslim Mohamed ◽  
Temmar Ryad

Breast cancer is one of the most common women cancers in the world. In this paper, a new approach based on thermography for the early detection of breast abnormality is proposed. The study involved 80 breast thermograms collected from the PROENG public database which consists of 50 healthy breasts and 30 with some findings. Image processing techniques such as segmentation, texture analysis and mathematical morphology were used to train a support vector machine (SVM) classifier for automatic detection of breast abnormality. After conducting several tests, we obtained very interesting and motivating results. Indeed, our method  showed a high performance in terms of sensitivity of 93.3%, a specificity of 90% and an accuracy of 91.25%. The final results let us conclude that infrared thermography with the help of an adequate automatic classification algorithm can be a valuable and reliable complementary tool for radiologist in detecting breast cancer and thereby helping to reduce mortality rates.


2020 ◽  
Vol 20 (06) ◽  
pp. 2050036
Author(s):  
NASSER EDINNE BENHASSINE ◽  
ABDELNOUR BOUKAACHE ◽  
DJALIL BOUDJEHEM

The Computer-Aided Diagnostic (CAD) system is an important tool that helps radiologists to provide a second opinion for the early detection of breast cancer and therefore, aids to reduce the mortality rates. In this work, we try to develop a new (CAD) system to classify mammograms into benign or malignant. The proposed system consists of three main steps. The preprocessing stage consists of noise filtering, elimination of unwanted objects and suppressing the pectoral muscle. The Seeded Region Growing (SRG) segmentation technique is applied in a triangular region that contains the pectoral muscle to localize it and extract the region of interest (ROI). The features extraction step is performed by applying the discrete wavelet transform (DWT) to each obtained ROI, and the most discriminating coefficients are selected using the discrimination power analysis (DPA) method. Finally, the classification is carried out by the support vector machine (SVM), artificial neural networks (ANN), random forest (RF) and Naive Bayes (NB) classifiers. The evaluation of the proposed system on the mini-MIAS database shows its effectiveness compared to other recently published CAD systems, and a classification accuracy of about 99.41% with the SVM classifier was obtained.


2020 ◽  
Vol 37 (4) ◽  
pp. 679-685
Author(s):  
Xiaodong Yan ◽  
Xiaogang Song

This paper mainly designs an image recognition algorithm of bolt loss in underground pipelines. Firstly, the local binary pattern (LBP) operator was improved to optimize the information content of eigenvectors and enhance the discriminability. Next, the patterns were selected through weighting and ranking, thereby optimizing the original features in each channel of the image. Meanwhile, the main patterns of each channel were classified and identified with the support vector machine (SVM) classifier. The radial basis function (RBF) was taken as the kernel function for the SVM, and the teaching-learning-based optimization (TLBO) algorithm was improved to optimize the SVM parameters. Finally, the improved SVM classifier assigns suitable weights to the predicted class tags of different channels, facilitating the recognition of bolt loss. The research results shed new light on the application of swarm intelligence in image recognition.


The early detection, diagnosis, prediction, and treatment of breast cancer are challenginghealthcare problems. This study focuses on outlining the traditional and trending techniques used for breast cancer detection, diagnosis, and prediction, including trending noninvasive, nonionizing, and biomarker genetic techniques.In addition, a Computer Aided Detection (CAD) is introduced to classify benign and malignant tumors in mammograms. This CAD system involves three steps. First, the Region of Interest (ROI) that includesthe tumor is identified using a threshold-based method. Second, a deep learning Convolutional Neural Network (CNN) processes the ROI to extract relevant mammogram features. Finally, a Support Vector Machine (SVM) classifier is used to decode two classes of mammogram structures (i.e., Benign (B), and Malignant (M) nodules). The training processes and implementations were carried out using 2800 mammogram images taken from the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). Results have shown that the accuracy of CNN-SVM system achieves 85.1% using AlexNet CNN. Comparison with related work shows the promise of the proposed CAD system


Author(s):  
Nazila Darabi ◽  
Abdalhossein Rezai ◽  
Seyedeh Shahrbanoo Falahieh Hamidpour

Breast cancer is a common cancer in female. Accurate and early detection of breast cancer can play a vital role in treatment. This paper presents and evaluates a thermogram based Computer-Aided Detection (CAD) system for the detection of breast cancer. In this CAD system, the Random Subset Feature Selection (RSFS) algorithm and hybrid of minimum Redundancy Maximum Relevance (mRMR) algorithm and Genetic Algorithm (GA) with RSFS algorithm are utilized for feature selection. In addition, the Support Vector Machine (SVM) and k-Nearest Neighbors (kNN) algorithms are utilized as classifier algorithm. The proposed CAD system is verified using MATLAB 2017 and a dataset that is composed of breast images from 78 patients. The implementation results demonstrate that using RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 85.36% and 75%, and sensitivity of 94.11% and 79.31%, respectively. In addition, using hybrid GA and RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 83.87% and 69.56%, and sensitivity of 96% and 81.81%, respectively, and using hybrid mRMR and RSFS algorithms for feature selection and kNN and SVM algorithms as classifier have accuracy of 77.41% and 73.07%, and sensitivity of 98% and 72.72%, respectively.


2021 ◽  
Vol 309 ◽  
pp. 01109
Author(s):  
Priyanka Yadlapalli ◽  
Madhavi K Reddy ◽  
Sunitha Gurram ◽  
J Avanija ◽  
K Meenakshi ◽  
...  

Women are far more likely than males to acquire breast cancer, and current research indicates that this is entirely avoidable. It is also to blame for higher death rates among younger women compared to older women in nearly all developing nations. Medical imaging modalities are continuously in need of development. A variety of medical techniques have been employed to detect breast cancer in women. The most recent studies support mammography for breast cancer screening, although its sensitivity and specificity remain suboptimal, particularly in individuals with thick breast tissue, such as young women. As a result, alternative modalities, such as thermography, are required. Digital Infrared Thermal Imaging (DITI), as it is known, detects and records temperature changes on the skin’s surface. Thermography is well-known for its non-invasive, painless, cost-effective, and high recovery rates, as well as its potential to identify breast cancer at an early stage. Gabor filters are used to extract the textural characteristics of the left and right breasts. Using a support vector machine, the thermograms are then classified as normal or malignant based on textural asymmetry between the breasts (SVM). The accuracy achieved by combining Gabor features with an SVM classifier is around 84.5 percent. The early diagnosis of cancer with thermography enhances the patient’s chances of survival significantly since it may detect the disease in its early stages.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1870
Author(s):  
Yaghoub Pourasad ◽  
Esmaeil Zarouri ◽  
Mohammad Salemizadeh Parizi ◽  
Amin Salih Mohammed

Breast cancer is one of the main causes of death among women worldwide. Early detection of this disease helps reduce the number of premature deaths. This research aims to design a method for identifying and diagnosing breast tumors based on ultrasound images. For this purpose, six techniques have been performed to detect and segment ultrasound images. Features of images are extracted using the fractal method. Moreover, k-nearest neighbor, support vector machine, decision tree, and Naïve Bayes classification techniques are used to classify images. Then, the convolutional neural network (CNN) architecture is designed to classify breast cancer based on ultrasound images directly. The presented model obtains the accuracy of the training set to 99.8%. Regarding the test results, this diagnosis validation is associated with 88.5% sensitivity. Based on the findings of this study, it can be concluded that the proposed high-potential CNN algorithm can be used to diagnose breast cancer from ultrasound images. The second presented CNN model can identify the original location of the tumor. The results show 92% of the images in the high-performance region with an AUC above 0.6. The proposed model can identify the tumor’s location and volume by morphological operations as a post-processing algorithm. These findings can also be used to monitor patients and prevent the growth of the infected area.


Optimization algorithms are widely used for the identification of intrusion. This is attributable to the increasing number of audit data features and the decreasing performance of human-based smart Intrusion Detection Systems (IDS) regarding classification accuracy and training time. In this paper, an improved method for intrusion detection for binary classification was presented and discussed in detail. The proposed method combined the New Teaching-Learning-Based Optimization Algorithm (NTLBO), Support Vector Machine (SVM), Extreme Learning Machine (ELM), and Logistic Regression (LR) (feature selection and weighting) NTLBO algorithm with supervised machine learning techniques for Feature Subset Selection (FSS). The process of selecting the least number of features without any effect on the result accuracy in FSS was considered a multi-objective optimization problem. The NTLBO was proposed in this paper as an FSS mechanism; its algorithm-specific, parameter-less concept (which requires no parameter tuning during an optimization) was explored. The experiments were performed on the prominent intrusion machine-learning datasets (KDDCUP’99 and CICIDS 2017), where significant enhancements were observed with the suggested NTLBO algorithm as compared to the classical Teaching-Learning-Based Optimization algorithm (TLBO), NTLBO presented better results than TLBO and many existing works. The results showed that NTLBO reached 100% accuracy for KDDCUP’99 dataset and 97% for CICIDS dataset


Author(s):  
Hadj Ahmed Bouarara

Breast cancer has become a major health problem in the world over the past 50 years and its incidence has increased in recent years. It accounts for 33% of all cancer cases, and 60% of new cases of breast cancer occur in women aged 50 to 74 years. In this work we have proposed a computer-assisted diagnostic (CAD) system that can predict whether a woman has cancer or not by analyzing her mammogram automatically without passing through a biopsy stage. The screening mammogram will be vectorized using the n-gram pixel representation. After the vectors obtained will be classified into one of the classes—with cancer or without cancer—using the social elephant algorithm. The experimentation using the digital database for screening mammography (DDSM) and validation measures—f-measure entropy recall, accuracy, specificity, RCT, ROC, AUC—show clearly the effectiveness and the superiority of our proposed bioinspired technique compared to others techniques existed in the literature such as naïve bayes, Knearest neighbours, and decision tree c4.5. The goal is to help radiologists with early detection to reduce the mortality rate among women with breast cancer.


Sign in / Sign up

Export Citation Format

Share Document