scholarly journals Protective Effects of Tao-Hong-Si-Wu Decoction on Memory Impairment and Hippocampal Damage in Animal Model of Vascular Dementia

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Lan Han ◽  
Zhaojie Ji ◽  
Weidong Chen ◽  
Dengke Yin ◽  
Fan Xu ◽  
...  

Tao-Hong-Si-Wu decoction (TSD) as a traditional chinese medicine (TCM) has been developed to treat thrombotic diseases for hundreds of years, and vascular dementia (VD) is a cognitive dysfunction syndrome caused by cerebral embolism. In this study, the protective effect of TSD on memory impairment and brain damage in rat model of VD induced by middle cerebral artery occlusion (MCAO) was investigated. The study showed that rats in MCAO treatment with TSD for 14 days significantly improved behavioral function, increased densities of neuron, and induced angiogenesis in the brain compared with model rats. TSD also adjusted the neurotransmitter levels, reduced the content of endothelin-1 (ET-1), and induced the activities of vascular endothelial growth factor (VEGF) in hippocampus. Moreover, the immunohistochemical staining and western blotting results also revealed that TSD decreased apoptosis via upregulated B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) ratio. These results demonstrated TSD possesses neuroprotective and antidementia properties by preventing the loss of neural cells, adjusting brain neurotransmitter, promoting cerebral blood circulation, and decreasing apoptosis. These results suggested that TSD might be developed as an effective drug for the prevention of VD.

Author(s):  
Yong-Ming Zhu ◽  
Liang Lin ◽  
Chao Wei ◽  
Yi Guo ◽  
Yuan Qin ◽  
...  

AbstractNecroptosis initiation relies on the receptor-interacting protein 1 kinase (RIP1K). We recently reported that genetic and pharmacological inhibition of RIP1K produces protection against ischemic stroke-induced astrocytic injury. However, the role of RIP1K in ischemic stroke-induced formation of astrogliosis and glial scar remains unknown. Here, in a transient middle cerebral artery occlusion (tMCAO) rat model and an oxygen and glucose deprivation and reoxygenation (OGD/Re)-induced astrocytic injury model, we show that RIP1K was significantly elevated in the reactive astrocytes. Knockdown of RIP1K or delayed administration of RIP1K inhibitor Nec-1 down-regulated the glial scar markers, improved ischemic stroke-induced necrotic morphology and neurologic deficits, and reduced the volume of brain atrophy. Moreover, knockdown of RIP1K attenuated astrocytic cell death and proliferation and promoted neuronal axonal generation in a neuron and astrocyte co-culture system. Both vascular endothelial growth factor D (VEGF-D) and its receptor VEGFR-3 were elevated in the reactive astrocytes; simultaneously, VEGF-D was increased in the medium of astrocytes exposed to OGD/Re. Knockdown of RIP1K down-regulated VEGF-D gene and protein levels in the reactive astrocytes. Treatment with 400 ng/ml recombinant VEGF-D induced the formation of glial scar; conversely, the inhibitor of VEGFR-3 suppressed OGD/Re-induced glial scar formation. RIP3K and MLKL may be involved in glial scar formation. Taken together, these results suggest that RIP1K participates in the formation of astrogliosis and glial scar via impairment of normal astrocyte responses and enhancing the astrocytic VEGF-D/VEGFR-3 signaling pathways. Inhibition of RIP1K promotes the brain functional recovery partially via suppressing the formation of astrogliosis and glial scar. Graphical Abstract


2016 ◽  
Vol 42 (1-2) ◽  
pp. 139-154 ◽  
Author(s):  
Carine Gandin ◽  
Catherine Widmann ◽  
Michel Lazdunski ◽  
Catherine Heurteaux

Background: There is increasing evidence that angiogenesis, through new blood vessel formation, results in improved collateral circulation and may impact the long-term recovery of patients. In this study, we first investigated the preventive action of a 5-week pretreatment of MLC901, an herbal extract preparation derived from Chinese medicine, against the deleterious effects of ischemic stroke and its effects on angiogenesis in a model of focal ischemia in mice. Methods: The stroke model was induced by 60 min of middle cerebral artery occlusion followed by reperfusion. MLC901 was administered in the drinking water of animals (6 g/l) for 5 weeks before ischemia and then during reperfusion. Results: MLC901 treatment increased the survival rate, reduced the cerebral infarct area and attenuated the blood brain barrier leakage as well as the neurologic dysfunction following ischemia and reperfusion. We provide evidence that MLC901 enhances endothelial cell proliferation and angiogenesis by increasing the number of neocortical vessels in the infarcted area. MLC901 regulates the expression of hypoxic inducible factor 1α and its downstream targets such as vascular endothelial growth factor and angiopoietins 1 and 2. This work also shows that erythropoietin is an important player in the enhancement of angiogenesis by MLC901. Conclusions: These results demonstrate therapeutic properties of MLC901, in addition to those previously described, in stimulating revascularization, neuroprotection and repair of the neurovascular unit after ischemic stroke.


2017 ◽  
Vol 26 (3) ◽  
pp. 461-467 ◽  
Author(s):  
Toru Yamashita ◽  
Wentao Liu ◽  
Yoshiaki Matsumura ◽  
Ryosuke Miyagi ◽  
Yun Zhai ◽  
...  

Somatic cells can be directly converted into induced neural stem cells (iNSCs) by defined transcription factors. However, the therapeutic effect of undifferentiated iNSCs on ischemic stroke has not been demonstrated. In this study, we used a mouse model of transient middle cerebral artery occlusion (tMCAO). iNSCs (5 × 105) were injected directly into the ipsilateral striatum and cortex 24 h after tMCAO. Histological analysis was performed at 7 days, 28 days, and 8 months after tMCAO. We found that iNSC transplantation successfully improved the survival rate of stroke model mice with significant functional recovery from the stroke. The fate of engrafted iNSCs was that the majority of iNSCs had differentiated into astroglial cells but not into neural cells in both the sham-operated brain and the poststroke brain without forming a tumor up to 8 months after tMCAO. Our data suggest that the directly converted iNSCs can be regarded as a candidate of safe cell resource for transplantation therapy in patients suffering from ischemic stroke.


2020 ◽  
Vol 117 (15) ◽  
pp. 8616-8623
Author(s):  
Daniela Mauceri ◽  
Bettina Buchthal ◽  
Thekla J. Hemstedt ◽  
Ursula Weiss ◽  
Christian D. Klein ◽  
...  

In the adult brain, vascular endothelial growth factor D (VEGFD) is required for structural integrity of dendrites and cognitive abilities. Alterations of dendritic architectures are hallmarks of many neurologic disorders, including stroke-induced damage caused by toxic extrasynaptic NMDA receptor (eNMDAR) signaling. Here we show that stimulation of eNMDARs causes a rapid shutoff of VEGFD expression, leading to a dramatic loss of dendritic structures. Using the mouse middle cerebral artery occlusion (MCAO) stroke model, we have established the therapeutic potential of recombinant mouse VEGFD delivered intraventricularly to preserve dendritic architecture, reduce stroke-induced brain damage, and facilitate functional recovery. An easy-to-use therapeutic intervention for stroke was developed that uses a new class of VEGFD-derived peptide mimetics and postinjury nose-to-brain delivery.


Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5235-5243 ◽  
Author(s):  
Kun Don Yi ◽  
James W. Simpkins

It is becoming increasingly clear that protein phosphatases are important modulators of cellular function and that disruption of these proteins are involved in neurodegenerative disease processes. Serine/threonine protein phosphatases (PP) such as protein phosphatase PP1, PP2A, and calcineurin are involved in hyperphosphorylation of τ- as well as β-amyloid-induced cell death. We have previously shown serine/threonine protein phosphatases to be involved in estrogen-mediated neuroprotection. The purpose of this study was to delineate the role of PP1, PP2A, and calcineurin in the mechanism of estrogen mediated neuroprotection against oxidative stress and excitotoxicity. Treatment with protein phosphatases inhibitor II, endothall, or cyclosporin A, which are specific inhibitors of PP1, PP2A, and calcineurin, respectively, did not have an effect on cell viability. However, in combination, these inhibitors adversely affected cell survival, which suggests the importance of serine/threonine protein phosphatases in maintenance of cellular function. Inhibitors of PP1, PP2A, and calcineurin attenuated the protective effects of estrogen against glutamate-induced -neurotoxicity but did not completely abrogate the estrogen-mediated protection. The attenuation of estrogen-induced neuroprotection was achieved through decrease in the activity of theses serine/threonine phosphatases without the concomitant decrease in protein expression. In an animal model, transient middle cerebral artery occlusion caused a 50% decrease in levels of PP1, PP2A, and PP2B ipsilateral to the lesion in a manner that was prevented by estradiol pretreatment. Therefore, we conclude that in the face of cytotoxic challenges in vitro and in vivo, estrogens maintain the function of PP1, PP2A, and calcineurin.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1374 ◽  
Author(s):  
Yasue Tanaka ◽  
Nami Nakagomi ◽  
Nobutaka Doe ◽  
Akiko Nakano-Doi ◽  
Toshinori Sawano ◽  
...  

Ischemic stroke is a critical disease caused by cerebral artery occlusion in the central nervous system (CNS). Recent therapeutic advances, such as neuroendovascular intervention and thrombolytic therapy, have allowed recanalization of occluded brain arteries in an increasing number of stroke patients. Although previous studies have focused on rescuing neural cells that still survive despite decreased blood flow, expanding the therapeutic time window may allow more patients to undergo reperfusion in the near future, even after lethal ischemia, which is characterized by death of mature neural cells, such as neurons and glia. However, it remains unclear whether early reperfusion following lethal ischemia results in positive outcomes. The present study used two ischemic mouse models—90-min transient middle cerebral artery occlusion (t-MCAO) paired with reperfusion to induce lethal ischemia and permanent middle cerebral artery occlusion (p-MCAO)—to investigate the effect of early reperfusion up to 8 w following MCAO. Although early reperfusion following 90-min t-MCAO did not rescue mature neural cells, it preserved the vascular cells within the ischemic areas at 1 d following 90-min t-MCAO compared to that following p-MCAO. In addition, early reperfusion facilitated the healing processes, including not only vascular but also neural repair, during acute and chronic periods and improved recovery. Furthermore, compared with p-MCAO, early reperfusion after t-MCAO prevented behavioral symptoms of neurological deficits without increasing negative complications, including hemorrhagic transformation and mortality. These results indicate that early reperfusion provides beneficial effects presumably via cytoprotective and regenerative mechanisms in the CNS, suggesting that it may be useful for stroke patients that experienced lethal ischemia.


2019 ◽  
Vol 15 (7) ◽  
pp. 743-754 ◽  
Author(s):  
Ming-Li Wang ◽  
Li-Xiang Zhang ◽  
Jun-Jie Wei ◽  
Lv-Li Li ◽  
Wei-Zhang Zhong ◽  
...  

Background Drugs that promote angiogenesis include statins, recombinant human granulocyte colony-stimulating factor, and stromal cell-derived factor-1. Low doses of atorvastatin could significantly increase the vascular expressions of endothelial growth factor, and the number of peripheral blood endothelial progenitor cells (EPCs), thus improving angiogenesis and local blood flow. G-CSF is an EPC-mobilization agent used in ischemia studies for targeting angiogenesis after cerebral ischemia via EPCs. In previous clinical trials, consistent conclusions have not been reached about the effectiveness of G-CSF on ischemic stroke. Therefore, the therapeutic effect of G-CSF and its combination with other medicines need further experimental verification. It is known that atorvastatin, rhG-CSF, and SDF-1 are considered the most promising neuroprotective candidates, but a comprehensive comparison of their effects is lacking. Aims To compare the effects of atorvastatin, stromal cell-derived factor-1, and recombinant human granulocyte colony-stimulating factor on ischemic stroke. Methods Adult male Sprague-Dawley rats were randomly allocated to three groups: normal, sham-operated, and middle cerebral artery occlusion operated. Middle cerebral artery occlusion operated rats were further allocated into saline, atorvastatin, recombinant human granulocyte colony-stimulating factor, and recombinant human granulocyte colony-stimulating factor + stromal cell-derived factor-1 groups. Neurological function evaluation, cerebral infarction and the blood–brain barrier integrity analysis, identification of angiogenic factors, assessment of angiogenesis, expression of growth-associated protein-43, neuroglobin, glial cell-derived neurotrophic factor, and cleaved caspase 3, were performed. Results Compared with atorvastatin or recombinant human granulocyte colony-stimulating factor alone, recombinant human granulocyte colony-stimulating factor + stromal cell-derived factor-1 treatment improved neurological performance, reduced cerebral infarction and blood–brain barrier disruption after stroke, and increased the content of stromal cell-derived factor-1, vascular endothelial growth factor, monocyte chemotactic protein 1, and basic fibroblast growth factor in peripheral blood. In addition, recombinant human granulocyte colony-stimulating factor + stromal cell-derived factor-1 promoted greater angiogenesis than atorvastatin or recombinant human granulocyte colony-stimulating factor alone and increased the expression of growth-associated protein-43, neuroglobin, and glial cell-derived neurotrophic factor, while decreasing the levels of cleaved caspase 3 in the brain after ischemic stroke. Conclusions Combination therapy with recombinant human granulocyte colony-stimulating factor and stromal cell-derived factor-1 is more effective than atorvastatin or recombinant human granulocyte colony-stimulating factor alone in protecting against stroke-induced damage and could be an optimal therapeutic strategy for stroke.


2016 ◽  
Vol 23 (5-6) ◽  
pp. 318-331 ◽  
Author(s):  
Dongfang Shen ◽  
Xiaoyan Tian ◽  
Wenxu Sang ◽  
Rongrong Song

Sign in / Sign up

Export Citation Format

Share Document