scholarly journals Differences in the Gene Expression Profiles of Slow- and Fast-Forming Preinduced Pluripotent Stem Cell Colonies

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sujin Kwon ◽  
Jung Sun Park ◽  
Byungkuk Min ◽  
Yong-Kook Kang

Induced pluripotent stem cells (iPSCs) are generated through a gradual process in which somatic cells undergo a number of stochastic events. In this study, we examined whether two different doxycycline-inducible iPSCs, slow-forming 4F2A-iPSCs and fast-forming NGFP-iPSCs, have equivalent levels of pluripotency. Multiplex reverse-transcriptase PCR generated gene expression profiles (GEPs) of 13 pluripotency genes in single initially formed-iPSC (if-iPSC) colonies of NGFP and 4F2A group. Assessment of GEP difference using a weighted root mean square deviation (wRMSD) indicates that 4F2A if-iPSCs are more closely related to mESCs than NGFP if-iPSCs. Consistently,NanogandSox2genes were more frequently derepressed in 4F2A if-iPSC group. We further examined 20 genes that are implicated in reprogramming. They were, overall, more highly expressed in NGFP if-iPSCs, differing from the pluripotency genes being more expressed in 4F2A if-iPSCs. wRMSD analysis for these reprogramming-related genes confirmed that the 4F2A if-iPSC colonies were less deviated from mESCs than the NGFP if-iPSC colonies. Our findings suggest that more important in attaining a better reprogramming is the mode of action by the given reprogramming factors, rather than the total activity of them exerting to the cells, as the thin-but-long-lasting mode of action in 4F2A if-iPSCs is shown to be more effective than its full-but-short-lasting mode in NGFP if-iPSCs.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chung-Min Kang ◽  
Seong-Oh Kim ◽  
Mijeong Jeon ◽  
Hyung-Jun Choi ◽  
Han-Sung Jung ◽  
...  

The aim of this study was to compare the differential gene expression and stemness in the human gingiva and dental follicles (DFs) according to their biological characteristics. Gingiva (n=9) and DFs (n=9) were collected from 18 children. Comparative gene expression profiles were collected using cDNA microarray. The expression of development, chemotaxis, mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSs) related genes was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Histological analysis was performed using hematoxylin-eosin and immunohistochemical staining. Gingiva had greater expression of genes related to keratinization, ectodermal development, and chemotaxis whereas DFs exhibited higher expression levels of genes related to tooth and embryo development. qRT-PCR analysis showed that the expression levels of iPSc factors includingSOX2,KLF4, andC-MYCwere58.5±26.3,12.4±3.5, and12.2±1.9times higher in gingiva andVCAM1(CD146) andALCAM(CD166) were33.5±6.9and4.3±0.8times higher in DFs. Genes related to MSCs markers includingCD13,CD34,CD73,CD90, andCD105were expressed at higher levels in DFs. The results of qRT-PCR and IHC staining supported the microarray analysis results. Interestingly, this study demonstrated transcription factors of iPS cells were expressed at higher levels in the gingiva. Given the minimal surgical discomfort and simple accessibility, gingiva is a good candidate stem cell source in regenerative dentistry.


2006 ◽  
Vol 25 (5) ◽  
pp. 379-395 ◽  
Author(s):  
Gisela Werle-Schneider ◽  
Andreas Wölfelschneider ◽  
Marie Charlotte von Brevern ◽  
Julia Scheel ◽  
Thorsten Storck ◽  
...  

Transcription profiling is used as an in vivo method for predicting the mode-of-action class of nongenotoxic carcinogens. To set up a reliable in vitro short-term test system DNA microarray technology was combined with rat liver slices. Seven compounds known to act as tumor promoters were selected, which included the enzyme inducers phenobarbital, α-hexachlorocyclohexane, and cyproterone acetate; the peroxisome proliferators WY-14,643, dehydroepiandrosterone, and ciprofibrate; and the hormone 17 α-ethinylestradiol. Rat liver slices were exposed to various concentrations of the compounds for 24 h. Toxicology-focused TOXaminer™ DNA microarrays containing approximately 1500 genes were used for generating gene expression profiles for each of the test compound. Hierarchical cluster analysis revealed that (i) gene expression profiles generated in rat liver slices in vitro were specific allowing classification of compounds with similar mode of action and (ii) expression profiles of rat liver slices exposed in vitro correlate with those induced after in vivo treatment (reported previously). Enzyme inducers and peroxisome proliferators formed two separate clusters, confirming that they act through different mechanisms. Expression profiles of the hormone 17 α-ethinylestradiol were not similar to any of the other compounds. In conclusion, gene expression profiles induced by compounds that act via similar mechanisms showed common effects on transcription upon treatment in vivo and in rat liver slices in vitro.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
T. Alexandrov ◽  
N. Golyandina ◽  
A. Spirov

We present investigation of gene expression profiles by means of singular spectrum analysis (SSA). The biological problem under investigation is the decomposition ofbicoidprotein profiles ofDrosophila melanogasterinto the sum of a signal and noise, where the former consists of an exponential-in-distance pattern and is close to constant nonspecific component, or “background.” The signal processing problems addressed are (i) trend extraction from a noisy signal, (ii) batch processing of similar data, and (iii) analytical approximation of the signal components by the sum of exponential and constant-like functions. The proposed methods are evaluated on the given 17 series.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Bo Long ◽  
Shenglan Li ◽  
Haipeng Xue ◽  
Li Sun ◽  
Dong H. Kim ◽  
...  

Propofol is an intravenous anesthetic that has been widely used in clinics. Besides its anesthetic effects, propofol has also been reported to influence the regulation of the autonomic system. Controversies exist with regard to whether propofol exposure is safe for pregnant women and young children. In this work, human-induced pluripotent stem cell- (hiPSC-) derived neural progenitor cells (NPCs) were treated with propofol at 20, 50, 100, or 300 μM for 6 h or 24 h, and acute and subacute cell injury, cell proliferation, and apoptosis were evaluated. Comparison of genome-wide gene expression profiles was performed for treated and control iPSC-NPCs. Propofol treatment for 6 h at the clinically relevant concentration (20 or 50 μM) did not affect cell viability, apoptosis, or proliferation, while propofol at higher concentration (100 or 300 μM) decreased NPC viability and induced apoptosis. In addition, 20 μM propofol treatment for 6 h did not alter global gene expression. In summary, propofol treatment at commonly practiced clinical doses for 6 h did not have adverse effects on hiPSC-derived NPCs. In contrast, longer exposure and/or higher concentration could decrease NPC viability and induce apoptosis.


Author(s):  
Petra Stute ◽  
S. Ehrentraut ◽  
H.-H. Henneicke-von Zepelin ◽  
P. Nicken

Abstract Purpose This study aimed at assessing gene expression profiles in hippocampus and hypothalamus of ovariectomized (OVX) rats with or without treatment with an isopropanolic extract of Cimicifuga racemosa rhizomes (iCR) in comparison to intact rats. Methods Exploration of hippocampal (Hi) and hypothalamic (Hy) tissue from Sprague Dawley rats: without OVX (NHi = NHy = 4), tissues 3 months after OVX (NHi = 4, NHy = 3), or tissues of rats after their treatment with iCR for 3 months after OVX (NHi = NHy = 2). Gene expression profiles in these tissues were investigated by RNA-microarray-analysis and subsequent verification by qPCR. Results 4812 genes were differentially regulated when comparing the three groups in hippocampus and hypothalamus. iCR compensated the effects of OVX in 518 genes. This compensatory effect was most prominent in hippocampal signalling pathways, thereof genes (GAL, CALCA, HCRT, AVPR1A, PNOC, etc.) involved in thermoregulation, regulation of sleep and arousal, blood pressure regulation, metabolism, nociception, hormonal regulation, homeostasis, learning and cognition, mood regulation, neuroendocrine modulation, etc.. In the hypothalamus, iCR compensated OVX-effects at TAC3 and OPRM1 but not at KISS1. These genes are involved in the pathophysiology of hot flashes. Conclusions Our pilot study findings support a multifaceted mode of action of iCR in menopausal complaints on a tissue-specific brain gene expression level.


2021 ◽  
Author(s):  
juanjuan wang ◽  
xin liu ◽  
jing yang ◽  
hanxing guo ◽  
jingjing li ◽  
...  

Abstract Small molecular compounds could improve the induction efficiency of induced pluripotent stem cells (iPS). To investigate their effects on the efficiency of interspecies nuclear transfers, fibroblasts from the Chuan snub-nosed monkey were treated with small molecular compounds and used as donor cells to be injected into the enucleated oocytes of a goat. The gene expression profiles in the cell-constructed embryos, with and without the small molecular compound treatments, were determined by qPCR. Results showed that the cell morphology showed obvious changes, while the gene expression profiles of the fibroblasts were altered by the treatment. The pluripotent genes (Oct4, sox2, and nanog) were significantly increased on treatment with the small molecular compounds. Results demonstrated that these small molecular compounds could alter the properties of the donor cells, to promote the expression levels of the pluripotent genes for the Chuan golden-goat interspecies embryo, which would provide references for conservation of Chuan snub-nosed monkey.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
LU LIU ◽  
Adrien Georges ◽  
Nabila Bouatia-Naji

Introduction: Smooth muscle cells (SMCs) capacity to phenotype switching between proliferative and quiescent (contractile) is a widely studied mechanism in cardiovascular disease. Primary SMCs tend to lose many physiological features in culture, which makes the study of their contractile function challenging. Recently, an optimized protocol of induced pluripotent stem cells (iPSCs) differentiation into contractile SMCs was described. Here we aimed at defining the transcriptomic and open chromatin dynamics during the acquisition of SMCs phenotypes. Methods: We differentiated 4 human iPSC lines (2 males, 2 females) towards either contractile (Repsox induced) or synthetic (PDGF-BB/TGF-β induced) SMC phenotypes using a 24-days protocol. We performed RNA-Seq and assay for transposase accessible chromatin (ATAC)-Seq at 5 time points of differentiation. We analyzed gene expression profiles and compared them to existing dataset of human aorta by principle component analyses (PCA) and gene set enrichment analyses using GO terms. Results: iPSCs derived SMCs showed expected morphology and positive expression of SMC markers. Synthetic SMCs (SSMCs) exhibited greater capacity of proliferation, migration and lower calcium release capacity, compared to contractile SMCs (CSMCs). RNA-Seq results showed that multiple genes involved in the contractile function of arteries, including myosin light chain kinase (MYLK) and angiotensin type 1 receptor ( AGTR1 ) genes were highly expressed in CSMCs compared to SSMCs. Overall, CSMCs conserved SMC properties beyond 24 days and their gene expression profile clustered near human aorta. During late differentiation stages, CSMCs showed an upregulation of genes involved in cardiovascular system development, whereas genes involved in cell stress were upregulated in SSMCs. Conclusions: We describe global genomic profiles of iPSCs derived CSMCs that presented comparable gene expression profiles to mature artery tissue. Combination with upcoming DNA accessibility maps is expected to allow the functional exploration of genetic risk variation involved in several arterial diseases involving the impairment of the SMCs contractile function.


Sign in / Sign up

Export Citation Format

Share Document