scholarly journals NDN-CRAHNs: Named Data Networking for Cognitive Radio Ad Hoc Networks

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Rana Asif Rehman ◽  
Jong Kim ◽  
Byung-Seo Kim

Named data networking (NDN) is a newly proposed paradigm for future Internet, in which communication among nodes is based on data names, decoupling from their locations. In dynamic and self-organized cognitive radio ad hoc networks (CRAHNs), it is difficult to maintain end-to-end connectivity between ad hoc nodes especially in the presence of licensed users and intermittent wireless channels. Moreover, IP-based CRAHNs have several issues like scalability, inefficient-mapping, poor resource utilization, and location dependence. By leveraging the advantages of NDN, in this paper, we propose a new cross layer fine-grained architecture called named data networking for cognitive radio ad hoc networks (NDN-CRAHNs). The proposed architecture provides distinct features such as in-networking caching, security, scalability, and multipath routing. The performances of the proposed scheme are evaluated comparing to IP-based scheme in terms of average end-to-end delay and packet delivery ratio. Simulation results show that the proposed scheme is effective in terms of average contents download time and packet delivery ratios comparing to conventional cognitive radio ad hoc networks.

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986638 ◽  
Author(s):  
Jing Wang ◽  
Huyin Zhang ◽  
Xing Tang ◽  
Sheng Hao

Cognitive radio–based vehicular ad hoc networks can solve the problem of limited spectrum resource and growing vehicular communication service demands in intelligent transportation systems, and thus, it receives much concern recently. In cognitive radio–based vehicular ad hoc networks, the high mobility of vehicles and the dynamic spectrum activity of cognitive radio make routing in such networks a great challenge. Some routing researches have been proposed in cognitive radio–based vehicular ad hoc networks with single-objective optimization and neglecting the nodes’ social behaviors which can improve the network performance. From this perspective, we propose a social-aware routing scheme for cognitive radio–based vehicular ad hoc networks, with the purpose of increasing the packet delivery ratio and decreasing the overhead ratio. First, we analyze the social centrality of primary users to offer an accuracy spectrum hole measurement. Moreover, we develop a social community partition algorithm to divide secondary users into intra-community and inter-community groups. Furthermore, considering the tradeoff between the packet delivery ratio and the overhead ratio, we adopt different replication policies and forwarding ranks in different community communication processes. In the intra-community communication process, we employ the single-copy policy and the contact duration rank. In the inter-community communication process, we utilize the optimized-binary-tree replication policy and the bridge coefficient rank. Simulation results show that our social-aware routing scheme achieves the higher package delivery ratio and the lower overhead ratio when compared with the existing cognitive radio–based vehicular ad hoc networks routing schemes and other standard routing schemes.


Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6743
Author(s):  
Fan Zhang ◽  
Gangqiang Yang

High-speed mobility and heavy-load traffic in mobile Ad hoc networks (MANET) may result in frequent topology changes and packet loss. To guarantee packet delivery, a novel stable backup routing (SBR) scheme is put forward in this paper, which consists of the establishment of backup routes and route maintenance. In SBR, backup routes are set up by overhearing MAC signals, and the bit error rate is considered in path selection for improving stability. To repair broken links effectively and reasonably, qualified backup routes are classified into three categories with different priorities, based on which the relevant nodes decide how to reconstruct the forwarding path. Extensive simulations demonstrate that our proposed method outperforms other comparable backup routing mechanisms in terms of packet delivery ratio, average delay and control overhead.


Author(s):  
William Dron ◽  
Alice Leung ◽  
Md Uddin ◽  
Shiguang Wang ◽  
Tarek Abdelzaher ◽  
...  

2018 ◽  
Vol 21 (1) ◽  
pp. 89
Author(s):  
I A Kaysina ◽  
D S Vasiliev ◽  
A V Abilov ◽  
A E Kaysin ◽  
A I Nistyuk

Описан тестовый стенд, который позволяет произвести оценку эффективности новых алгоритмов кодирования в летающих сенсорных сетях (Flying Ad Hoc Networks, FANET), в том числе и метода сетевого кодирования. В тестовый стенд входят: наземная станция (ноутбук), летающий робот (беспилотный летальный аппарат, БПЛА) и несколько микрокомпьютеров Raspberry Pi 3. С помощью тестового стенда была оценена возможная дальность связи между наземной станцией и летающим роботом, а также доказана возможность реализации сетевого кодирования на промежуточном узле на базе Raspberry Pi 3. Оценка дальности связи между наземной станцией и летающим роботом была произведена с помощью первого сценария. Летающий робот отправлял видеоданные с бортовой камеры на наземную станцию. После сбора всех данных было проанализировано качество обслуживания (quality of service, QoS) и рассчитан коэффициент доставленных пакетов (Packet Delivery Ratio, PDR) с помощью программы анализатора сетевого трафика Wireshark. По результатам измерений была найдена максимальная дальность связи между наземной станцией и летающим роботом с использованием стандарта 802.11n (Wi-Fi). Возможность реализации сетевого кодирования в самоорганизующихся сетях была произведена с помощью второго сценария. Была создана самоорганизующаяся сеть из трех микрокомпьютеров Raspberry Pi 3. Для маршрутизации данных использовался протокол B.A.T.M.A.N., на основе которого может быть проанализирована одна из реализаций метода сетевого кодирования.


Author(s):  
Shamsul J Elias ◽  
M. Elshaikh ◽  
M. Yusof Darus ◽  
Jamaluddin Jasmis ◽  
Angela Amphawan

<p>Vehicular Ad hoc Networks (VANET) play a vital Vehicle to Infrastructure (V2I) correspondence frameworks where vehicle are convey by communicating and conveying data transmitted among each other. Because of both high versatility and high unique network topology, congestion control should be executed distributedly. Optimizing the congestion control in term of delay rate, packet delivery ratio (PDR) and throughput could limit the activity of data packet transmissions. These have not been examined altogether so far – but rather this characteristic will be fundamental for VANET system execution and network system performance. This paper exhibits a novel strategy for congestion control and data transmission through Service Control Channel (SCH) in VANET. The Taguchi strategy has been connected in getting the optimize value of parameter for congstion control in highway environment. This idea lessens the pointless activity of data transmission and decreases the likelihood of congested in traffic in view of execution for measuring the delay rate, packet delivery ratio (PDR) and throughput. The proposed execution performance is estimated with the typical VANET environment in V2I topology in highway driving conditions and the simulation results demonstrate and enhance network execution performance with effective data transmission capacity.</p>


Sign in / Sign up

Export Citation Format

Share Document