scholarly journals 802.11p Profile Adaptive MAC Protocol for Non-Safety Messages on Vehicular Ad Hoc Networks

Author(s):  
Shamsul J Elias ◽  
M. Elshaikh ◽  
M. Yusof Darus ◽  
Jamaluddin Jasmis ◽  
Angela Amphawan

<p>Vehicular Ad hoc Networks (VANET) play a vital Vehicle to Infrastructure (V2I) correspondence frameworks where vehicle are convey by communicating and conveying data transmitted among each other. Because of both high versatility and high unique network topology, congestion control should be executed distributedly. Optimizing the congestion control in term of delay rate, packet delivery ratio (PDR) and throughput could limit the activity of data packet transmissions. These have not been examined altogether so far – but rather this characteristic will be fundamental for VANET system execution and network system performance. This paper exhibits a novel strategy for congestion control and data transmission through Service Control Channel (SCH) in VANET. The Taguchi strategy has been connected in getting the optimize value of parameter for congstion control in highway environment. This idea lessens the pointless activity of data transmission and decreases the likelihood of congested in traffic in view of execution for measuring the delay rate, packet delivery ratio (PDR) and throughput. The proposed execution performance is estimated with the typical VANET environment in V2I topology in highway driving conditions and the simulation results demonstrate and enhance network execution performance with effective data transmission capacity.</p>

2015 ◽  
Vol 738-739 ◽  
pp. 1115-1118
Author(s):  
Li Cui Zhang ◽  
Xiao Nan Zhu ◽  
Zhi Gang Wang ◽  
Guang Hui Han

Considering the shortcoming of the traditional Greedy Perimeter Stateless Routing Protocol in the Vehicular Ad hoc Networks ,this paper focuses on an improved GPSR protocol based on the density of vehicle flow .This new scheme includes macro-directing algorithm , micro-forwarding strategy and the maintenance of the neighbor list.The simulation result shows that compared with the traditional GPSR protocol, the new GPSR protocol improves data packet delivery ratio, but its average end-to-end delay is slightly larger than before.


2020 ◽  
Vol 29 (11) ◽  
pp. 2050180
Author(s):  
S. David ◽  
P. T. Vanathi

Vehicular Ad-hoc NETworks (VANETs) are typically termed as a wireless ad-hoc network that contains extreme node mobility and also the network carries a great significance in various traffic-oriented commercial applications and safety services. Due to its high mobility, routing in VANET has been a challenging work and also proving a higher rate of packet delivery ratio with reduced packet loss has been more important to be considered in route formations. With that note, this paper contributes to developing a clustering model called Middle-Order Vehicle-based Clustering (MOVC) model for managing the frequent topological change and high vehicle mobility, and efficiently handling the typical road traffic scenario. Moreover, the algorithm is intended to maintain the cluster to be constant for managing the vehicles in effective ways and also to provide uninterrupted communication between the vehicles. An algorithm for Effective Cluster Head Election (ECHE) is also derived in this paper for proficiently handling the frequency variation on the highways. Further, the model is simulated and evaluated on the basis of various metrics of VANET routing, specifically packet loss, packet delivery ratio, network lifetime and throughput. The results show that the proposed mechanism outperforms the results of existing models.


Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2691 ◽  
Author(s):  
Yao Liu ◽  
Hongjing Zhou ◽  
Jiawei Huang

Cooperative communication is an effective method of improving the transmission performance for vehicular ad hoc networks. However, the rapid movement of vehicles leads to frequent changes in network topology and reduces the probability of successful data transmission on the medium access control (MAC) layer. In this paper, we propose an Optimal Cooperative Ad hoc MAC protocol (OCA-MAC) based on time division multiple access (TDMA). OCA-MAC utilizes multiple cooperative nodes to forward data, so as to improve the probability of successful data transmission. It chooses cooperative nodes according to direct successful transmission probability, communication range between potential helper node and destination node, and available time slot. Meanwhile, in order to avoid excessive transmission redundancy caused by multiple cooperative forwarding, the optimal number of cooperative forwarding nodes is obtained through analysis of a probabilistic model. Simulation results show that OCA-MAC improves the successful data transmission rate and reduces the number of transmission times and transmission delay compared to the multichannel TDMA MAC protocol (VeMAC) and the cooperative ad hoc MAC protocol (CAH-MAC).


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
David Chunhu Li ◽  
Li-Der Chou ◽  
Li-Ming Tseng ◽  
Yi-Ming Chen ◽  
Kai-Wei Kuo

To support an increasing amount of various new applications in vehicular ad hoc networks (VANETs), routing protocol design has become an important research challenge. In this paper, we propose a Bipolar Traffic Density Awareness Routing (BTDAR) protocol for vehicular ad hoc networks. The BTDAR aims at providing reliable and efficient packets delivery for dense and sparse vehicle traffic network environments. Two distinct routing protocols are designed to find an optimal packet delivery path in varied vehicular networks. In dense networks, a link-stability based routing protocol is designed to take vehicles connectivity into consideration in its path selection policy and maximize the stability of intervehicle communications. In sparse networks, a min-delay based routing protocol is proposed to select an optimal route by analyzing intermittent vehicle connectivity and minimize packets delivery latency. Intervehicles connectivity model is analyzed. The performance of BTDAR is examined by comparisons with three distinct VANET routing protocols. Simulation results show that the BTDAR outperforms compared counterpart routing protocols in terms of packet delivery delay and packet delivery ratio.


Author(s):  
Akram A. Almohammedi ◽  
Nor K. Noordin ◽  
A. Sali ◽  
Fazirulhisyam Hashim ◽  
Abdulmalek Al-Hemyari

Vehicular Ad Hoc Networks (VANETs) is a technology supporting two types of applications, safety and service applications with higher and lower priorities respectively. Thereby, Medium Access Control (MAC) protocol is designed to provide reliable and efficient data broadcasting based on prioritization. Different from the IEEE 1609.4 (legacy), HER-MAC protocol is a new multi-channel MAC proposed for VANETs, offering remarkable performance with regards to safety applications transmission. This paper focuses on the analysis of packet delivery ratio of the HER-MAC protocol under non-saturated conditions. 1-D and 2-D Markov chains have been developed for safety and non-safety applications respectively, to evaluate mathematically the performance of HER-MAC protocol. The presented work has taken into account the freezing of the backoff timer for both applications and the backoff stages along with short retry limit for non-safety applications in order to meet the IEEE 802.11p specifications. It highlights that taking these elements into consideration are important in modeling the system, to provide an accurate estimation of the channel access, and guarantees that no packet is served indefinitely. More precise results of the system packet delivery ratio have been yield. The probability of successful transmission and collisions were derived and used to compute the packet delivery ratio. The simulation results validate the analytical results of our models and indicate that the performance of our models outperformed the existing models in terms of the packet delivery ratio under different number of vehicles and contention window.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Khalid A. Darabkh ◽  
Ola A. Alsukour

Due to its simplicity, efficiency, and robustness to mobility, the On-Demand Multicast Routing Protocol (ODMRP) becomes a standout amongst the most broadly utilized multicast routing protocols in mobile ad hoc networks (MANETs). However, the robustness of ODMRP comes at the expense of incurring a high control overhead to the network. The Enhanced ODMRP (EODMRP) proposed a dynamic refresh interval for the multicast mesh based on the network feedback on real disconnections experienced by the multicast network members. Veritably, EODMRP decreased the network control overhead at the cost of obtaining a low packet delivery ratio especially in high mobility conditions of the network. In this paper, two protocols, as improvements to both ODMRP and EODMRP, are proposed where the refresh interval is basically adapted based on the source moving speed and the number of disconnections reported by multicast members. Furthermore, we proposed an impressive local recovery to be employed in both protocols, which includes new setup and failure mechanisms that contribute effectively to boosting the performance of our proposed protocols. Since the majority of nodes in MANET rely on batteries, the main contribution of this research is to limit the amount of control information that is passed between nodes (i.e., reducing the control overhead over that in ODMRP) while maintaining a better packet delivery ratio than EODMRP.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2405 ◽  
Author(s):  
Md. Siddik ◽  
Shafika Moni ◽  
Mohammad Alam ◽  
William Johnson

Highly dynamic geographical topology, two-direction mobility, and varying traffic density can lead to fairness issues in Vehicular Ad-hoc Networks (VANETs). The Medium Access Control (MAC) protocol plays a vital role in sharing the common wireless channel efficiently between vehicles in a VANET system. However, ensuring fairness between vehicles can be a challenge in designing MAC protocols for VANET systems. The existing protocol, IEEE 802.11 DCF, ensures that the packet transmission rate for a particular vehicle is directly proportional to the amount of time a vehicle spends within a service area, but it does not guarantee that faster vehicles will be able to send the minimum number of packets. Other existing MAC protocols based on IEEE 802.11 are able to provide a minimum amount of data transmission regardless of velocity, but are unable to provide an amount of data transmission that is more proportionate to the time a vehicle spends in the service area. To address the above limitations, we propose a Speed Aware Fairness Enabled MAC (SAFE-MAC) protocol that calculates the residence time of a vehicle in a service area by using mobility metrics such as position, direction, and speed to synthesize the transmission probability of each individual vehicle with respect to its residence time. This is achieved by dynamically altering the values of parameters such as minimum contention window, maximum backoff stage, and retransmission limit in the MAC protocol. We then develop an analytical model to compare the performance of our proposed protocol with contemporary MAC protocols. Numerical analysis results show that our proposed protocol significantly improves fairness among the speed-varying vehicles in VANET.


Sign in / Sign up

Export Citation Format

Share Document