scholarly journals miR-125b Suppresses Proliferation and Invasion by Targeting MCL1 in Gastric Cancer

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shihua Wu ◽  
Feng Liu ◽  
Liming Xie ◽  
Yaling Peng ◽  
Xiaoyuan Lv ◽  
...  

Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1088 ◽  
Author(s):  
I-Han Wang ◽  
Tzu-Ting Huang ◽  
Ji-Lin Chen ◽  
Li-Wei Chu ◽  
Yueh-Hsin Ping ◽  
...  

The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Feng Yang ◽  
Anpei Hu ◽  
Dan Li ◽  
Jianqun Wang ◽  
Yanhua Guo ◽  
...  

Abstract Background Circular RNAs (circRNAs), a subclass of non-coding RNAs, play essential roles in tumorigenesis and aggressiveness. Our previous study has identified that circAGO2 drives gastric cancer progression through activating human antigen R (HuR), a protein stabilizing AU-rich element-containing mRNAs. However, the functions and underlying mechanisms of circRNAs derived from HuR in gastric cancer progression remain elusive. Methods CircRNAs derived from HuR were detected by real-time quantitative RT-PCR and validated by Sanger sequencing. Biotin-labeled RNA pull-down, mass spectrometry, RNA immunoprecipitation, RNA electrophoretic mobility shift, and in vitro binding assays were applied to identify proteins interacting with circRNA. Gene expression regulation was observed by chromatin immunoprecipitation, dual-luciferase assay, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its protein partner on the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Results Circ-HuR (hsa_circ_0049027) was predominantly detected in the nucleus, and was down-regulated in gastric cancer tissues and cell lines. Ectopic expression of circ-HuR suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, circ-HuR interacted with CCHC-type zinc finger nucleic acid binding protein (CNBP), and subsequently restrained its binding to HuR promoter, resulting in down-regulation of HuR and repression of tumor progression. Conclusions Circ-HuR serves as a tumor suppressor to inhibit CNBP-facilitated HuR expression and gastric cancer progression, indicating a potential therapeutic target for gastric cancer.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Yang ◽  
Nan Jiang ◽  
Qi-wei Cao ◽  
Qing Sun

Abstract Gastric cancer is the most common digestive malignant tumor worldwild. EDD1 was reported to be frequently amplified in several tumors and played an important role in the tumorigenesis process. However, the biological role and potential mechanism of EDD1 in gastric cancer remains poorly understood. In this study, we are aim to investigate the effect of EDD1 on gastric cancer progression and to explore the underlying mechanism. The results showed the significant up-regulation of EDD1 in -gastric cancer cell tissues and lines. The expression level of EDD1 was also positively associated with advanced clinical stages and predicted poor overall patient survival and poor disease-free patient survival. Besides, EDD1 knockdown markedly inhibited cell viability, colony formation, and suppressed tumor growth. Opposite results were obtained in gastric cancer cells with EDD1 overexpression. EDD1 knockdown was also found to induce gastric cancer cells apoptosis. Further investigation indicated that the oncogenic role of EDD1 in regulating gastric cancer cells growth and apoptosis was related to its PABC domain and directly through targeting miR-22, which was significantly down-regulated in gastric cancer tissues. Totally, our study suggests that EDD1 plays an oncogenic role in gastric cancer and may be a potential therapeutic target for gastric cancer.


Author(s):  
Zhifu Gui ◽  
Zhenguo Zhao ◽  
Qi Sun ◽  
Guoyi Shao ◽  
Jianming Huang ◽  
...  

Long non-coding RNAs (lncRNAs) play important roles in human cancers including gastric cancer (GC). Dysregulation of lncRNAs is involved in a variety of pathological activities associated with gastric cancer progression and chemo-resistance. However, the role and molecular mechanisms of FEZF1-AS1 in chemoresistance of GC remain unknown. In this study, we aimed to determine the role of FEZF1-AS1 in chemoresistance of GC. The level of FEZF1-AS1 in GC tissues and GC cell lines was assessed by qRT-PCR. Our results showed that the expression of FEZF1-AS1 was higher in gastric cancer tissues than in adjacent normal tissues. Multivariate analysis identified that high level of FEZF1-AS1 is an independent predictor for poor overall survival. Increased FEZF1-AS1 expression promoted gastric cancer cell proliferation in vitro. Additionally, FEZF1-AS1 was upregulated in chemo-resistant GC tissues. The regulatory effect of FEZF1-AS1 on multi-drug resistance (MDR) in GC cells and the underlying mechanism was investigated. It was found that increased FEZF1-AS1 expression promoted chemo-resistance of GC cells. Molecular interactions were determined by RNA immunoprecipitation (RIP) and the results showed that FEZF1-AS1 regulated chemo-resistance of GC cells through modulating autophagy by directly targeting ATG5. The proliferation and autophagy of GC cells promoted by overexpression of LncFEZF1-AS1 was suppressed when ATG5 was knocked down. Moreover, knockdown of FEZF1-AS1 inhibited tumor growth and increased 5-FU sensitivity in GC cells in vivo. Taken together, this study revealed that the FEZF1-AS1/ATG5 axis regulates MDR of GC cells via modulating autophagy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yixun Lu ◽  
Benlong Zhang ◽  
Baohua Wang ◽  
Di Wu ◽  
Chuang Wang ◽  
...  

Abstract Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. Methods Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. Results GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. Conclusions MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression.


2020 ◽  
Author(s):  
Lu Jin ◽  
Zhiwei He ◽  
Changhao Zhu ◽  
Guoliang Xiao ◽  
Xianjin Yang ◽  
...  

Abstract Background: CircRNA is a new type of non-coding RNA that has attracted much attention for involvement in the development and progression of various human diseases, especially cancer. The most reported role of circRNA in many tumors is ‘MiRNA sponge’. We aimed to investigate the role of circBVES in the proliferation and glycolysis of gastric cancer cells and its molecular mechanisms.Methods: In this study, higher CircBVES expression in gastric cancer tissues was detected by RNA sequencing. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of CircBVES in gastric cancer tissues, and the relationship between the expression of CircBVES and prognosis was further analyzed. Then, the effects of CircBVES on the growth and glycolysis of gastric cancer cells were investigated through in vitro and in vivo functional experiments. The interaction between CircBVES and miR-145-5p was detected by bioinformatics analysis, luciferase activity assay and RNA immunoprecipitation.Results: We found that the expression of CircBVES in gastric cancer tissues was evidently up-regulated, and its level was closely correlated with the prognosis of patients with gastric cancer. Inhibition of CircBVES decreased cell proliferation and glycolysis in vitro. Low expression of CircBVES inhibited tumor growth in vivo. Mechanism analysis showed that CircBVES may serve as a competitive endogenous RNA of miR-145-5p to reduce the expression of miR-145-5p in gastric cancer cells, and relieve the repressive effect of miR-145-5p on target genes HMGB3 and cycle-related proteins CCNE1 and CDK2.Conclusions: Our results suggest that CircAGFG1 may promote the progress of gastric cancer through the CircBVES / miR-145-5p / HMGB3 axis, providing a new target for the treatment of gastric cancer cells.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dong-Liang Chen ◽  
Hui Sheng ◽  
Dong-Sheng Zhang ◽  
Ying Jin ◽  
Bai-Tian Zhao ◽  
...  

Abstract Background Dysregulation of circular RNAs (circRNAs) plays an important role in the development of gastric cancer; thus, revealing the biological and molecular mechanisms of abnormally expressed circRNAs is critical for identifying novel therapeutic targets in gastric cancer. Methods A circRNA microarray was performed to identify differentially expressed circRNAs between primary and distant metastatic tissues and between gastric cancer tissues sensitive or resistant to anti-programmed cell death 1 (PD-1) therapy. The expression of circRNA discs large homolog 1 (DLG1) was determined in a larger cohort of primary and distant metastatic gastric cancer tissues. The role of circDLG1 in gastric cancer progression was evaluated both in vivo and in vitro, and the effect of circDLG1 on the antitumor activity of anti-PD-1 was evaluated in vivo. The interaction between circDLG1 and miR-141-3p was assessed by RNA immunoprecipitation and luciferase assays. Results circDLG1 was significantly upregulated in distant metastatic lesions and gastric cancer tissues resistant to anti-PD-1 therapy and was associated with an aggressive tumor phenotype and adverse prognosis in gastric cancer patients treated with anti-PD-1 therapy. Ectopic circDLG1 expression promoted the proliferation, migration, invasion, and immune evasion of gastric cancer cells. Mechanistically, circDLG1 interacted with miR-141-3p and acted as a miRNA sponge to increase the expression of CXCL12, which promoted gastric cancer progression and resistance to anti-PD-1-based therapy. Conclusions Overall, our findings demonstrate how circDLG1 promotes gastric cancer cell proliferation, migration, invasion and immune evasion and provide a new perspective on the role of circRNAs during gastric cancer progression.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qiang Yan ◽  
Chenming Ni ◽  
Yingying Lin ◽  
Xu Sun ◽  
Zhenhua Shen ◽  
...  

Pancreatic cancer is one of the most lethal cancers and its prognosis is extremely poor. Clarification of molecular mechanisms and identification of prognostic biomarkers are urgently needed. Though we previously found that LGMN was involved in pancreatic carcinoma progression, the upstream regulation of LGMN remains unknown. We used reliable software to search for the potential transcription factors that may be related with LGMN transcription, we found that ELK1 could be a new regulator of LGMN transcription that binded directly to the LGMN promoter. Moreover, knocking down of ELK1 reduced pancreatic cancer cells proliferation, invasion and survival, while LGMN restored the malignancy of pancreatic cancer in vitro and in vivo. Overexpression of ELK1 further increased cancer cells proliferation, invasion and survival. Clinically, ELK1 and LGMN were positively correlated with clinical stage, degree of differentiation and Lymph node infiltration. ELK1 and LGMN were identified as independent prognostic factors for overall survival. The patients with low expression of ELK1/LGMN survived an average of 29.65 months, whereas those with high expression of ELK1/LGMN survived an average of 16.67 months. In conclusive, our results revealed a new mechanism by which ELK1 promoted the progression of pancreatic cancer via LGMN and conferred poor prognosis.


2021 ◽  
Author(s):  
Bin Wu ◽  
Yan-xia Wang ◽  
Jun-jie Wang ◽  
Dong-fang Xiang ◽  
Meng-si Zhang ◽  
...  

Abstract Background: Plexin-domain containing 2 (PLXDC2) has been reported as an oncoprotein in several human malignancies. However, its expression and roles in gastric cancer remain largely unclear. Methods: The expression of PLXDC2 in 170 gastric cancer specimens was measured by using immunohistochemical staining and its clinical relevance was statistically analyzed. Matrigel-transwell invasion assays and mouse intraperitoneal metastasis models with PLXDC2-silencing and -overexpressing gastric cells were performed to explore the biological functions of PLXDC2 in gastric cancer cells. RNA-Seq, immunofluorescence and Co-IP analyses were used to investigate the potential molecular mechanisms of PLXDC2 action in gastric cancer. Results: PLXDC2 was highly expressed in gastric cancer tissues, and the expression levels were positively correlated with clinicopathological features, but negatively with the patients’ outcome. Cox regression analysis identified PLXDC2 as an independent prognostic indicator for the patients. Knockdown of PLXDC2 markedly suppressed the in vitro invasion and in vivo metastasis of gastric cancer cells, while overexpression of PLXDC2 resulted in opposite effects. Mechanistically, PLXDC2 inhibited dephosphorylation of phosphorylated Cortactin by physically interacting with PTP1B, an important tyrosine phosphatase, thereby promoting the formation of invadopodium. Conclusions: PLXDC2 contributes to the invasion and metastasis of gastric cancer by inhibiting PTP1B to facilitate the invadopodium formation, and may serve as a potential prognostic biomarker and a therapeutic target for this disease.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Qi Shi ◽  
Chuanwen Zhou ◽  
Rui Xie ◽  
Miaomiao Li ◽  
Peng Shen ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play an important role in tumor progression in various cancer types, including gastric cancer. The aim of this study was to investigate the role of circCNIH4 (hsa_circ_0000190) in gastric cancer and the underlying mechanism. Methods The expression levels of circCNIH4 and Wnt antagonist genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of β-catenin, Ki67, Dickkopf 2 (DKK2) and Frizzled related protein (FRZB) were measured by western blot. Ectopic overexpression or knockdown of circCNIH4, proliferation, apoptosis, migration and invasion by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry and transwell assay in vitro, and in vivo experiment, were employed to assess the role of circCNIH4 in gastric cancer. Results CircCNIH4 was downregulated in gastric cancer tissues and cells. Overexpression of circCNIH4 inhibited gastric cancer cell proliferation, migration and invasion and promoted apoptosis by inactivating Wnt/β-catenin pathway in vitro. CircCNIH4 induced the expression of DKK2 and FRZB in gastric cancer cells. Moreover, silencing of DKK2 or FRZB reversed circCNIH4 overexpression-mediated effects on gastric cancer cells. Additionally, circCNIH4 suppressed tumor growth via regulating DKK2 and FRZB expression in gastric cancer in vivo. Conclusion Our study demonstrated that circCNIH4 played a tumor-inhibiting role through upregulating DKK2 and FRZB expression and suppressing Wnt/β-catenin pathway in gastric cancer, which might provide a potential biomarker for the diagnosis and treatment of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document