scholarly journals The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p

2021 ◽  
Vol 20 (1) ◽  
Dong-Liang Chen ◽  
Hui Sheng ◽  
Dong-Sheng Zhang ◽  
Ying Jin ◽  
Bai-Tian Zhao ◽  

Abstract Background Dysregulation of circular RNAs (circRNAs) plays an important role in the development of gastric cancer; thus, revealing the biological and molecular mechanisms of abnormally expressed circRNAs is critical for identifying novel therapeutic targets in gastric cancer. Methods A circRNA microarray was performed to identify differentially expressed circRNAs between primary and distant metastatic tissues and between gastric cancer tissues sensitive or resistant to anti-programmed cell death 1 (PD-1) therapy. The expression of circRNA discs large homolog 1 (DLG1) was determined in a larger cohort of primary and distant metastatic gastric cancer tissues. The role of circDLG1 in gastric cancer progression was evaluated both in vivo and in vitro, and the effect of circDLG1 on the antitumor activity of anti-PD-1 was evaluated in vivo. The interaction between circDLG1 and miR-141-3p was assessed by RNA immunoprecipitation and luciferase assays. Results circDLG1 was significantly upregulated in distant metastatic lesions and gastric cancer tissues resistant to anti-PD-1 therapy and was associated with an aggressive tumor phenotype and adverse prognosis in gastric cancer patients treated with anti-PD-1 therapy. Ectopic circDLG1 expression promoted the proliferation, migration, invasion, and immune evasion of gastric cancer cells. Mechanistically, circDLG1 interacted with miR-141-3p and acted as a miRNA sponge to increase the expression of CXCL12, which promoted gastric cancer progression and resistance to anti-PD-1-based therapy. Conclusions Overall, our findings demonstrate how circDLG1 promotes gastric cancer cell proliferation, migration, invasion and immune evasion and provide a new perspective on the role of circRNAs during gastric cancer progression.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Shihua Wu ◽  
Feng Liu ◽  
Liming Xie ◽  
Yaling Peng ◽  
Xiaoyuan Lv ◽  

Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.

2016 ◽  
Vol 0 (0) ◽  
Min Yang ◽  
Nan Jiang ◽  
Qi-wei Cao ◽  
Qing Sun

Abstract Gastric cancer is the most common digestive malignant tumor worldwild. EDD1 was reported to be frequently amplified in several tumors and played an important role in the tumorigenesis process. However, the biological role and potential mechanism of EDD1 in gastric cancer remains poorly understood. In this study, we are aim to investigate the effect of EDD1 on gastric cancer progression and to explore the underlying mechanism. The results showed the significant up-regulation of EDD1 in -gastric cancer cell tissues and lines. The expression level of EDD1 was also positively associated with advanced clinical stages and predicted poor overall patient survival and poor disease-free patient survival. Besides, EDD1 knockdown markedly inhibited cell viability, colony formation, and suppressed tumor growth. Opposite results were obtained in gastric cancer cells with EDD1 overexpression. EDD1 knockdown was also found to induce gastric cancer cells apoptosis. Further investigation indicated that the oncogenic role of EDD1 in regulating gastric cancer cells growth and apoptosis was related to its PABC domain and directly through targeting miR-22, which was significantly down-regulated in gastric cancer tissues. Totally, our study suggests that EDD1 plays an oncogenic role in gastric cancer and may be a potential therapeutic target for gastric cancer.

2021 ◽  
Vol 19 (1) ◽  
Yixun Lu ◽  
Benlong Zhang ◽  
Baohua Wang ◽  
Di Wu ◽  
Chuang Wang ◽  

Abstract Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. Methods Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. Results GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. Conclusions MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression.

2020 ◽  
Lu Jin ◽  
Zhiwei He ◽  
Changhao Zhu ◽  
Guoliang Xiao ◽  
Xianjin Yang ◽  

Abstract Background: CircRNA is a new type of non-coding RNA that has attracted much attention for involvement in the development and progression of various human diseases, especially cancer. The most reported role of circRNA in many tumors is ‘MiRNA sponge’. We aimed to investigate the role of circBVES in the proliferation and glycolysis of gastric cancer cells and its molecular mechanisms.Methods: In this study, higher CircBVES expression in gastric cancer tissues was detected by RNA sequencing. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of CircBVES in gastric cancer tissues, and the relationship between the expression of CircBVES and prognosis was further analyzed. Then, the effects of CircBVES on the growth and glycolysis of gastric cancer cells were investigated through in vitro and in vivo functional experiments. The interaction between CircBVES and miR-145-5p was detected by bioinformatics analysis, luciferase activity assay and RNA immunoprecipitation.Results: We found that the expression of CircBVES in gastric cancer tissues was evidently up-regulated, and its level was closely correlated with the prognosis of patients with gastric cancer. Inhibition of CircBVES decreased cell proliferation and glycolysis in vitro. Low expression of CircBVES inhibited tumor growth in vivo. Mechanism analysis showed that CircBVES may serve as a competitive endogenous RNA of miR-145-5p to reduce the expression of miR-145-5p in gastric cancer cells, and relieve the repressive effect of miR-145-5p on target genes HMGB3 and cycle-related proteins CCNE1 and CDK2.Conclusions: Our results suggest that CircAGFG1 may promote the progress of gastric cancer through the CircBVES / miR-145-5p / HMGB3 axis, providing a new target for the treatment of gastric cancer cells.

2022 ◽  
Vol 11 ◽  
Haijuan Gu ◽  
Yuejiao Zhong ◽  
Jibin Liu ◽  
Qian Shen ◽  
Rong Wei ◽  

Gastric cancer is a deadly human malignancy and the molecular mechanisms underlying gastric cancer pathophysiology are very complicated. Thus, further investigations are warranted to decipher the underlying molecular mechanisms. With the development of high-throughput screening and bioinformatics, gene expression profiles with large scale have been performed in gastric cancer. In the present study, we mined The Cancer Genome Atlas (TCGA) database and analyzed the gene expression profiles between gastric cancer tissues and normal gastric tissues. A series of differentially expressed lncRNAs, miRNAs and mRNAs between gastric cancer tissues and normal gastric tissues were identified. Based on the differentially expressed genes, we constructed miRNA-mRNA network, lncRNA-mRNA network and transcriptional factors-mRNA-miRNA-lncRNA network. Furthermore, the Kaplan survival analysis showed that high expression levels of EVX1, GBX2, GCM1, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13 were all significantly correlated with shorter overall survival of the patients with gastric cancer. On the other hand, low expression level of HOXA13 was associated with shorter overall survival of patients with gastric cancer. Among these hub genes, we performed the in vitro functional studies of HOXC8 in the gastric cancer cells. Knockdown of HOXC8 and overexpression of miR-4256 both significantly repressed the gastric cancer cell proliferation and migration, and miR-4256 repressed the expression of HOXC8 via targeting its 3’ untranslated region in gastric cancer cells. Collectively, our results revealed that a complex interaction networks of differentially expressed genes in gastric cancer, and further functional studies indicated that miR-4256/HOXC8 may be an important axis in regulating gastric cancer progression.

2021 ◽  
Vol 28 (1) ◽  
Qi Shi ◽  
Chuanwen Zhou ◽  
Rui Xie ◽  
Miaomiao Li ◽  
Peng Shen ◽  

Abstract Background Circular RNAs (circRNAs) have been reported to play an important role in tumor progression in various cancer types, including gastric cancer. The aim of this study was to investigate the role of circCNIH4 (hsa_circ_0000190) in gastric cancer and the underlying mechanism. Methods The expression levels of circCNIH4 and Wnt antagonist genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of β-catenin, Ki67, Dickkopf 2 (DKK2) and Frizzled related protein (FRZB) were measured by western blot. Ectopic overexpression or knockdown of circCNIH4, proliferation, apoptosis, migration and invasion by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry and transwell assay in vitro, and in vivo experiment, were employed to assess the role of circCNIH4 in gastric cancer. Results CircCNIH4 was downregulated in gastric cancer tissues and cells. Overexpression of circCNIH4 inhibited gastric cancer cell proliferation, migration and invasion and promoted apoptosis by inactivating Wnt/β-catenin pathway in vitro. CircCNIH4 induced the expression of DKK2 and FRZB in gastric cancer cells. Moreover, silencing of DKK2 or FRZB reversed circCNIH4 overexpression-mediated effects on gastric cancer cells. Additionally, circCNIH4 suppressed tumor growth via regulating DKK2 and FRZB expression in gastric cancer in vivo. Conclusion Our study demonstrated that circCNIH4 played a tumor-inhibiting role through upregulating DKK2 and FRZB expression and suppressing Wnt/β-catenin pathway in gastric cancer, which might provide a potential biomarker for the diagnosis and treatment of gastric cancer.

2022 ◽  
Vol 13 (1) ◽  
Huaiming Sang ◽  
Weifeng Zhang ◽  
Lei Peng ◽  
Shuchun Wei ◽  
Xudong Zhu ◽  

AbstractCircular RNAs (circRNAs) play a vital role in the occurrence and development of tumors, including gastric cancer (GC). However, there are still many circRNAs related to GC whose functions and molecular mechanisms remain undetermined. Herein, we discover circRNA RELL1, which has not been investigated in GC, and it is markedly downregulated in GC tissues, which is related with poor prognosis, more pronounced lymph node metastasis and poor TNM stage. After confirming the circular structure of circRELL1, we found that circRELL1 could block cell proliferation, invasion, migration, and anti-apoptosis in patients with GC by a series of in vivo and in vitro function-related studies. Further mechanism investigation demonstrated that circRELL1 could sponge miR-637 and indirectly unregulated the expression of EPHB3 via modulating autophagy activation in GC. Additionally, circRELL1 can be transmitted by exosomal communication, and exosomal circRELL1 suppressed the malignant behavior of GC in vivo and in vitro. Taken together, this study elucidates the suppressive roles of circRELL1/miR-637/EPHB3 axis through autophagy activation in GC progression, inspiring for further understanding of the underlying molecular mechanisms of GC and providing a promising novel diagnostic circulating biomarker and therapeutic target in GC.

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1088 ◽  
I-Han Wang ◽  
Tzu-Ting Huang ◽  
Ji-Lin Chen ◽  
Li-Wei Chu ◽  
Yueh-Hsin Ping ◽  

The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.

Zhifu Gui ◽  
Zhenguo Zhao ◽  
Qi Sun ◽  
Guoyi Shao ◽  
Jianming Huang ◽  

Long non-coding RNAs (lncRNAs) play important roles in human cancers including gastric cancer (GC). Dysregulation of lncRNAs is involved in a variety of pathological activities associated with gastric cancer progression and chemo-resistance. However, the role and molecular mechanisms of FEZF1-AS1 in chemoresistance of GC remain unknown. In this study, we aimed to determine the role of FEZF1-AS1 in chemoresistance of GC. The level of FEZF1-AS1 in GC tissues and GC cell lines was assessed by qRT-PCR. Our results showed that the expression of FEZF1-AS1 was higher in gastric cancer tissues than in adjacent normal tissues. Multivariate analysis identified that high level of FEZF1-AS1 is an independent predictor for poor overall survival. Increased FEZF1-AS1 expression promoted gastric cancer cell proliferation in vitro. Additionally, FEZF1-AS1 was upregulated in chemo-resistant GC tissues. The regulatory effect of FEZF1-AS1 on multi-drug resistance (MDR) in GC cells and the underlying mechanism was investigated. It was found that increased FEZF1-AS1 expression promoted chemo-resistance of GC cells. Molecular interactions were determined by RNA immunoprecipitation (RIP) and the results showed that FEZF1-AS1 regulated chemo-resistance of GC cells through modulating autophagy by directly targeting ATG5. The proliferation and autophagy of GC cells promoted by overexpression of LncFEZF1-AS1 was suppressed when ATG5 was knocked down. Moreover, knockdown of FEZF1-AS1 inhibited tumor growth and increased 5-FU sensitivity in GC cells in vivo. Taken together, this study revealed that the FEZF1-AS1/ATG5 axis regulates MDR of GC cells via modulating autophagy.

Qiuling Niu ◽  
Zhijie Dong ◽  
Min Liang ◽  
Yuanwei Luo ◽  
Hai Lin ◽  

Abstract Background Accumulating evidences have shown that circular RNAs (circRNAs) play important roles in regulating the pathogenesis of cancer. However, the role of circRNAs in gastric cancer (GC) remains largely unclear. Methods In this study, we identified a novel upregulated circRNA, hsa_circ_0001829, in chemically induced malignant transformed human gastric epithelial cells using RNA-seq. Subsequent qRT-PCR and ISH assays were performed to detect the expression level of hsa_circ_0001829 in GC cell lines and tissues. Functional roles of hsa_circ_0001829 in GC were then explored by loss- and gain-of- function assays. Bioinformatic prediction and luciferase assay were used to investigate potential mechanisms of hsa_circ_0001829. Finally, the mice xenograft and metastasis models were constructed to assess the function of hsa_circ_0001829 in vivo. Results We found that hsa_circ_0001829 was significantly upregulated in GC tissues and cell lines. Loss- and gain-of- function assays showed that hsa_circ_0001829 promotes GC cells proliferation, migration and invasion, and the affected cell cycle progression and apoptosis rates may account for the effect of hsa_circ_0001829 on GC proliferation. In addition, bioinformatic prediction and luciferase assay showed that hsa_circ_0001829 acts as a molecular sponge for miR-155-5p and that SMAD2 was a target gene of miR-155-5p; moreover, hsa_circ_0001829 sponges miR-155-5p to regulate SMAD2 expression and hsa_circ_0001829 promotes GC progression through the miR-155-5p–SMAD2 pathway. Finally, suppression of hsa_circ_0001829 expression inhibited tumor growth and aggressiveness in vivo. Conclusion Taken together, our findings firstly demonstrated a novel oncogenic role of hsa_circ_0001829 in GC progression through miR-155-5p–SMAD2 axis, and our study may offer novel biomarkers and therapeutic targets for GC.

Sign in / Sign up

Export Citation Format

Share Document