scholarly journals Delayed Consensus Problem for Single and Double Integrator Systems

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Martín Velasco-Villa ◽  
Josué Heras-Godínez ◽  
José Alejandro Vázquez-Santacruz ◽  
Varinia Fragoso-Rubio

This work deals with the analysis of the consensus problem for networks of agents constituted by single and double integrator systems. It is assumed that the communication among agents is affected by a constant time-delay. Previous and numerous analysis of the problem shows that the maximum communication time-delay that can be introduced to the network without affecting the consensus of the group of the agents depends on the considered topology. In this work, a control scheme that is based on the estimation of future states of the agents and that allows increasing the magnitude of a possible time-delay affecting the communication channels is proposed. How the proposed delay compensation strategy is independent of the network topology in the sense that the maximum allowable time-delay that could be supported by the network depends on a design parameter and not on the maximum eigenvalue of the corresponding Laplacian matrix is shown. It is formally proven that, under the proposed prediction scheme, the consensus of the group can be achieved by improving the maximum time-delay bounds previously reported in the literature. Numerical simulations show the effectiveness of the proposed solution.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Bo Liu ◽  
Li Wang ◽  
Dehui Sun ◽  
Xinmao Zhu

This paper investigates the consensus problem of multiagent systems with directed topologies. Different from the literatures, a new method, the Laplace transform, to study the consensus of multiagent systems with directed topology and communication time delay is proposed. The accurate state of the consensus center and the upper bound of the communication delay to make the agents reach consensus are given. It is proved that all the agents could aggregate and eventually form a cohesive cluster in finite time under certain conditions, and the consensus center is only determined by the initial states and the communication configuration among the agents. Finally, simulations are given to illustrate the theoretical results.


2020 ◽  
Vol 53 (2) ◽  
pp. 4804-4809
Author(s):  
Leopoldo Vite ◽  
Marco A. Gomez ◽  
Jesús Morales ◽  
Sabine Mondié

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lingling Fan ◽  
Chengyan Wu

This paper studies the consensus problem of a second-order multiagent system (MAS) with fixed communication delay under the structure of leaderless and leader-following systems. By using graph theory and finite-time control scheme, a distributed control protocol is proposed for each agent to reach consensus in a finite time. In practical application, the time delay of states is unavoidable, and for this, the consensus method is supposed to be extended to solve the time-delay problem. Thus, a finite-time consensus protocol with communication time delay is proposed in this paper. Compared with the general consensus method, the reliability and convergence speed of the system are increased by using the finite-time control. In addition, the protocol is distributed, and all agents have only local interactions. Finally, the effectiveness of the proposed protocol is verified by two numerical simulations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xunxun Zhang ◽  
Li Li ◽  
Xu Zhu

Due to the limited band width and congestion of communication channels in the wireless vehicle-to-vehicle (V2V) communication, time delay inevitably arises and dramatically leads to the disturbances for the automated vehicular platoon. This paper focuses on computing the exact time delay stability margin. In this study, we treat this problem as a stability issue of a consensus system with time delay, where each vehicle in the platoon is recognized as a node, and the interconnected information flow is represented as a graph. Then, the distributed controller is designed by combining the states of the vehicle itself and its neighbouring vehicles. Furthermore, the stability of the entire platoon is analysed according to the characteristic equation of the closed-loop system, and a necessary and sufficient condition for the exact time delay stability margin is obtained. Especially, for the automated vehicular platoon with undirected topology, it is revealed that exact time delay stability margin is determined by the largest eigenvalue of the augmented Laplacian matrix. Furthermore, a rapid method for finding exact time delay stability margin is proposed. Finally, numerical simulations demonstrate that this work generates exact and satisfactory time delay stability margin for the automated vehicular platoon.


2015 ◽  
Vol 135 (7) ◽  
pp. 755-764 ◽  
Author(s):  
Shuhei Shimizu ◽  
Yoshiki Ohno ◽  
Takahiro Nozaki ◽  
Kouhei Ohnishi

Sign in / Sign up

Export Citation Format

Share Document