scholarly journals The Impact of ATRA on Shaping Human Myeloid Cell Responses to Epithelial Cell-Derived Stimuli and on T-Lymphocyte Polarization

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Arunima Chatterjee ◽  
Péter Gogolak ◽  
Hervé M. Blottière ◽  
Éva Rajnavölgyi

Vitamin A plays an essential role in the maintenance of gut homeostasis but its interplay with chemokines has not been explored so far. Using anin vitromodel system we studied the effects of human colonic epithelial cells (Caco2, HT-29, and HCT116) derived inflammatory stimuli on monocyte-derived dendritic cells and macrophages. Unstimulated Caco2 and HT-29 cells secreted CCL19, CCL21, and CCL22 chemokines, which could attract dendritic cells and macrophages and induced CCR7 receptor up-regulation by retinoic-acid resulting in dendritic cell migration. The chemokines Mk, CXCL16, and CXCL7 were secreted by all the 3 cell lines tested, and upon stimulation by IL-1βor TNF-αthis effect was inhibited by ATRA but had no impact on CXCL1, CXCL8, and CCL20 secretion in response to IL-1β. In the presence of ATRA the supernatants of these cells induced CD103 expression on monocyte-derived dendritic cells and when conditioned by ATRA and cocultured with CD4+T-lymphocytes they reduced the proportion of Th17 T-cells. However, in the macrophage-T-cell cocultures the number of these effector T-cells was increased. Thus cytokine-activated colonic epithelial cells trigger the secretion of distinct combinations of chemokines depending on the proinflammatory stimulus and are controlled by retinoic acid, which also governs dendritic cell and macrophage responses.

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Sarah M. Bray ◽  
Lazar Vujanovic ◽  
Lisa H. Butterfield

Immunotherapy of cancer must promote antitumor effector cells for tumor eradication as well as counteract immunoregulatory mechanisms which inhibit effectors. Immunologic therapies of cancer are showing promise, including dendritic cell-(DC-) based strategies. DC are highly malleable antigen-presenting cells which can promote potent antitumor immunity as well as tolerance, depending on the environmental signals received. Previously, we tested a peptide-pulsed DC vaccine to promote Alpha-fetoprotein (AFP-) specific anti-tumor immunity in patients with hepatocellular carcinoma (HCC), and reported on the CD8+T cell responses induced by this vaccine and the clinical trial results. Here, we show that the peptide-loaded DC enhanced NK cell activation and decreased regulatory T cells (Treg) frequencies in vaccinated HCC patients. We also extend these data by testing several forms of DC vaccinesin vitroto determine the impact of antigen loading and maturation signals on both NK cells and Treg from healthy donors and HCC patients.


2015 ◽  
Vol 59 (4) ◽  
pp. 698-710 ◽  
Author(s):  
Miriam Bermudez-Brito ◽  
Neha M. Sahasrabudhe ◽  
Christiane Rösch ◽  
Henk A. Schols ◽  
Marijke M. Faas ◽  
...  

Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3333-3341 ◽  
Author(s):  
Markus G. Manz ◽  
David Traver ◽  
Toshihiro Miyamoto ◽  
Irving L. Weissman ◽  
Koichi Akashi

It has been proposed that there are at least 2 classes of dendritic cells (DCs), CD8α+ DCs derived from the lymphoid lineage and CD8α− DCs derived from the myeloid lineage. Here, the abilities of lymphoid- and myeloid-restricted progenitors to generate DCs are compared, and their overall contributions to the DC compartment are evaluated. It has previously been shown that primitive myeloid-committed progenitors (common myeloid progenitors [CMPs]) are efficient precursors of both CD8α+ and CD8α− DCs in vivo. Here it is shown that the earliest lymphoid-committed progenitors (common lymphoid progenitors [CLPs]) and CMPs and their progeny granulocyte-macrophage progenitors (GMPs) can give rise to functional DCs in vitro and in vivo. CLPs are more efficient in generating DCs than their T-lineage descendants, the early thymocyte progenitors and pro-T cells, and CMPs are more efficient DC precursors than the descendant GMPs, whereas pro-B cells and megakaryocyte-erythrocyte progenitors are incapable of generating DCs. Thus, DC developmental potential is preserved during T- but not B-lymphoid differentiation from CLP and during granulocyte-macrophage but not megakaryocyte-erythrocyte development from CMP. In vivo reconstitution experiments show that CLPs and CMPs can reconstitute CD8α+ and CD8α− DCs with similar efficiency on a per cell basis. However, CMPs are 10-fold more numerous than CLPs, suggesting that at steady state, CLPs provide only a minority of splenic DCs and approximately half the DCs in thymus, whereas most DCs, including CD8α+ and CD8α− subtypes, are of myeloid origin.


2008 ◽  
Vol 115 (11) ◽  
pp. 343-351 ◽  
Author(s):  
Pisake Boontham ◽  
Adrian Robins ◽  
Palanichamy Chandran ◽  
David Pritchard ◽  
Miguel Cámara ◽  
...  

Pathogenic bacteria use quorum-sensing signal molecules to co-ordinate the expression of virulence genes. Animal-based studies have demonstrated the immunomodulatory effects of quorum-sensing signal molecules. In the present study, we have examined the impact of these molecules on normal human immune function in vitro and compared this with immune changes in patients with sepsis where quorum-sensing signal molecules were detected in the sera of patients. Quorum-sensing signal molecules inhibited normal dendritic cell and T-cell activation and proliferation, and down-regulated the expression of co-stimulatory molecules on dendritic cells; in MLDCRs (mixed lymphocyte dendritic cell reactions), secretion of IL (interleukin)-4 and IL-10 was enhanced, but TNF-α (tumour necrosis factor-α), IFN-γ (interferon-γ) and IL-6 was reduced. Quorum-sensing signal molecules induced apoptosis in dendritic cells and CD4+ cells, but not CD8+ cells. Dendritic cells from patients with sepsis were depleted and ex vivo showed defective expression of co-stimulatory molecules and dysfunctional stimulation of allogeneic T-lymphocytes. Enhanced apoptosis of dendritic cells and differential CD4+ Th1/Th2 (T-helper 1/2) cell apoptotic rate, and modified Th1/Th2 cell cytokine profiles in MLDCRs were also demonstrated in patients with sepsis. The pattern of immunological changes in patients with sepsis mirrors the effects of quorum-sensing signal molecules on responses of immune cells from normal individuals in vitro, suggesting that quorum-sensing signal molecules should be investigated further as a cause of immune dysfunction in sepsis.


2009 ◽  
Vol 206 (9) ◽  
pp. 1995-2011 ◽  
Author(s):  
Genevieve Fortin ◽  
Marianne Raymond ◽  
Vu Quang Van ◽  
Manuel Rubio ◽  
Patrick Gautier ◽  
...  

Mesenteric lymph node (mLN) CD103 (αE integrin)+ dendritic cells (DCs) induce regulatory T cells and gut tolerance. However, the function of intestinal CD103− DCs remains to be clarified. CD47 is the ligand of signal regulatory protein α (SIRPα) and promotes SIRPα+ myeloid cell migration. We first show that mucosal CD103− DCs selectively express SIRPα and that their frequency was augmented in the lamina propria and mLNs of mice that developed Th17-biased colitis in response to trinitrobenzene sulfonic acid. In contrast, the percentage of SIRPα+CD103− DCs and Th17 responses were decreased in CD47-deficient (CD47 knockout [KO]) mice, which remained protected from colitis. We next demonstrate that transferring wild-type (WT), but not CD47 KO, SIRPα+CD103− DCs in CD47 KO mice elicited severe Th17-associated wasting disease. CD47 expression was required on the SIRPα+CD103− DCs for efficient trafficking to mLNs in vivo, whereas it was dispensable on both DCs and T cells for Th17 polarization in vitro. Finally, administration of a CD47-Fc molecule resulted in reduced SIRPα+CD103− DC–mediated Th17 responses and the protection of WT mice from colitis. We thus propose SIRPα+CD103− DCs as a pathogenic DC subset that drives Th17-biased responses and colitis, and the CD47–SIRPα axis as a potential therapeutic target for inflammatory bowel disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Ness ◽  
Shiming Lin ◽  
John R. Gordon

Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3375
Author(s):  
Annabelle Vogt ◽  
Farsaneh Sadeghlar ◽  
Tiyasha H. Ayub ◽  
Carlo Schneider ◽  
Christian Möhring ◽  
...  

Dendritic cells (DC) as professional antigen presenting cells are able to prime T-cells against the tumor-associated antigen α-fetoprotein (AFP) for immunotherapy of hepatocellular carcinoma (HCC). However, a strong immunosuppressive tumor environment limits their efficacy in patients. The co-stimulation with CD40Ligand (CD40L) is critical in the maturation of DC and T-cell priming. In this study, the impact of intratumoral (i.t.) CD40L-expressing DC to improve vaccination with murine (m)AFP-transduced DC (Ad-mAFP-DC) was analyzed in subcutaneous (s.c.) and orthotopic murine HCC. Murine DC were adenovirally transduced with Ad-mAFP or Ad-CD40L. Hepa129-mAFP-cells were injected into the right flank or the liver of C3H-mice to induce subcutaneous (s.c.) and orthotopic HCC. For treatments, 106 Ad-mAFP-transduced DC were inoculated s.c. followed by 106 CD40L-expressing DC injected intratumorally (i.t.). S.c. inoculation with Ad-mAFP-transduced DC, as vaccine, induced a delay of tumor-growth of AFP-positive HCC compared to controls. When s.c.-inoculation of Ad-mAFP-DC was combined with i.t.-application of Ad-CD40L-DC synergistic antitumoral effects were observed and complete remissions and long-term survival in 62% of tumor-bearing animals were achieved. Analysis of the tumor environment at different time points revealed that s.c.-vaccination with Ad-mAFP-DC seems to stimulate tumor-specific effector cells, allowing an earlier recruitment of effector T-cells and a Th1 shift within the tumors. After i.t. co-stimulation with Ad-CD40L-DC, production of Th1-cytokines was strongly increased and accompanied by a robust tumor infiltration of mature DC, activated CD4+-, CD8+-T-cells as well as reduction of regulatory T-cells. Moreover, Ad-CD40L-DC induced tumor cell apoptosis. Intratumoral co-stimulation with CD40L-expressing DC significantly improves vaccination with Ad-mAFP-DC in pre-established HCC in vivo. Combined therapy caused an early and strong Th1-shift in the tumor environment as well as higher tumor apoptosis, leading to synergistic tumor regression of HCC. Thus, CD40L co-stimulation represents a promising tool for improving DC-based immunotherapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document