scholarly journals Interface Shear Actions and Mechanical Properties of Nanostructured Dissimilar Al Alloy Laminated Metal Composites

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Zejun Chen ◽  
Quanzhong Chen

The laminated metal composites (LMCs) of dissimilar metals (aluminium alloys: AA1100/AA7075) were fabricated using the accumulative roll bonding technique in conjunction with cold rolling. The LMCs of ultrafine grained AA1100 and nanostructured precipitates of AA7075 achieved metallurgical bonding. The microstructure of the bonding interfaces and constituent metals was investigated using scanning electron microscopy and transmission electron microscopy for the LMCs with different layers. The deformation incompatibility and shear actions were analyzed using the microanalysis of dissimilar bonding interfaces. The mechanism of grain refinement of LMCs was investigated and described based on the microstructure characterization. The mechanical properties, strengthening mechanism, and fracture mechanism of LMCs were also investigated. The research results showed that the strengthening mechanism of LMCs is the recombination action of grain refinement, dislocation, and laminated interfacial strengthening. The coordinated deformation of dissimilar metals and the layer thickness are important in improving the mechanical properties of LMCs consisting of dissimilar metals.

2020 ◽  
Vol 979 ◽  
pp. 84-88
Author(s):  
A. Arun ◽  
Lakshmanan Poovazhgan

Accumulative Roll Bonding (ARB) is one among the techniques in Severe Plastic Deformation (SPD) which is used to produce ultrafine grains and nanocrystalline structure in the materials used. Tensile test, micro hardness test, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and bending tests are the various tests carried out to understand the grain refinement of ARB materials. ARB is carried out in homogenous and heterogeneous materials to bring out the useful applications of ultrafine grained materials. ARB process mainly carried out in room, warm and hot temperature. The variations in the structure of the material are obtained by changing the load applied on the roller and by increasing the number of passes. This review paper brings out how the mechanical properties of the materials are improved by ARB process


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Chaoyang Chaoyang ◽  
Guangjie Guangjie ◽  
Lingfei Lingfei ◽  
Fei Fei ◽  
Lin Lin

The microstructure evolution of AA2060 Al alloy containing Li during two-stage homogenization treatment was investigated by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), differential scanning calorimeter (DSC), transmission electron microscopy (TEM), mechanical properties and Vickers micro-hardness test methods. The results demonstrate that severe precipitation of θ(Al2Cu) and S(Al2CuMg) phase existed in the as-cast alloy, especially in the center position. Cu elements were concentrated at grain boundary and gradually decreased from the boundary to the interior. Numerous eutectic phases of θ(Al2Cu) and S (Al2CuMg) containing Zn and Ag elements were segregated at grain boundaries. The overheating temperature of the as-cast alloy is 497 °C. After two-stage homogenization treatment, the θ(Al2Cu) and S (Al2CuMg) in the surface, middle and center positions were completely dissolved into the matrix, thus achieved uniform homogenization effect. Moreover, water cooling could prevent the precipitation after homogenization, which provided good performance of the studied alloy. The optimum two-stage homogenization treatment of AA2060 alloy was 460 °C/4 h + 490 °C/2 4 h. The homogenization kinetic analysis was discussed as well.


2004 ◽  
Vol 449-452 ◽  
pp. 625-628 ◽  
Author(s):  
Yong Suk Kim ◽  
T.O. Lee ◽  
Dong Hyuk Shin

The ARB process has been carried out up to seven cycles on a commercial purity 1100 aluminum alloy to obtain ultra-fine grains with the average grain size of 500 nm. Microstructural evolution of the ARB processed aluminum alloy was examined by a transmission electron microscopy as a function of accumulated total strain. Mechanical properties including hardness, tensile property, and sliding wear characteristics of the severely deformed Al alloy were also investigated. Grain boundaries of the ARB processed alloy were diffusive and poorly defined after the initial ARB cycles, however they changed to well-defined high angle boundaries with the increase of the accumulated strain. Though hardness and strength of the ARB processed alloy were enhanced significantly, wear resistance of the processed alloy hardly increased. The mechanical properties were discussed in connection with the microstructure.


2012 ◽  
Vol 57 (3) ◽  
pp. 711-717 ◽  
Author(s):  
K. Bryła ◽  
J. Dutkiewicz ◽  
L. Litynska-Dobrzynska ◽  
L.L. Rokhlin ◽  
P. Kurtyka

The aim of this work was to investigate the influence of the number of equal channel angular pressing (ECAP) passes on the microstructure and mechanical properties of AZ31 magnesium alloy. The microstructure after two and four passes of ECAP at 423 and 523 K was investigated by means of optical and transmission electron microscopy. The mechanical properties were carried out using Vickers microhardness measurements and compression test. The grain refinement in AZ31 alloy was obtained using ECAP routes down to 1,5 μm at 423 K. Processes of dynamic recrystallization during ECAP were observed. It was found that a gradual decrease of grain size occurs with the increasing of number of ECAP passes. The grain refinement increases mechanical properties at ambient temperature, such as Vickers microhardness and compression strength proportionally to d-0.5.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 841 ◽  
Author(s):  
Jingli Yan ◽  
Zijun Qin ◽  
Kai Yan

Equal-channel angular pressing (ECAP) was performed on a Mg (6 wt %) Zn alloy at temperatures from 160 to 240 °C and the microstructures and mechanical properties were studied using optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and an electronic universal testing machine. The results showed that ECAP was effective for grain refinement and a bi-modal grain structure formed at low temperatures, which was stable during ECAP from 160 to 200 °C. MgZn2 phase and Mg4Zn7 phase were generated during the ECAP process. The mechanical properties remarkably increased after two repetitions of ECAP. However, the strengths could not be further improved by increasing the plastic deformation, but decreased when ECAP was performed between 200 and 240 °C. The mechanical properties of the ECAP Mg-6Zn alloy was determined by a combination of grain refinement strengthening, precipitation hardening, and texture softening.


2011 ◽  
Vol 172-174 ◽  
pp. 727-732 ◽  
Author(s):  
Ileana Irais Santana ◽  
Francisco Carlos Robles Hernandez ◽  
Vicente Garibay-Febles ◽  
Hector A. Calderon

Composites of Fe-C60and Al C60produced by mechanical milling and sinterized by Spark Plasma Sintering are investigated with special attention to the mechanical properties of the products. The processing involves phase transformations of the fullerenes that are interesting to follow and characterize. This involves formation of tetragonal/rhombohedral diamond and carbides during sintering and milling. Transmission Electron Microscopy (TEM) and Raman Spectroscopy techniques are also used to confirm preliminary results of X Ray Diffraction (XRD) related to the formation of nanostructures i.e., grain size of the crystals during mechanical milling and after sintering, spatial distribution of phases and the different phases that are developed during processing.


2013 ◽  
Vol 747-748 ◽  
pp. 124-131 ◽  
Author(s):  
Li Yuan Sheng ◽  
Jian Ting Guo ◽  
Chao Yuan ◽  
F. Yang ◽  
G.S. Li ◽  
...  

The Ni3Al and Ni3Al-B-Cr alloys were fabricated by the self-propagation high-temperature synthesis with hot extrusion method. Their microstructure and mechanical properties were studied by using combination of X-ray diffraction, optical microscopy, transmission electron microscopy and compression test. Analysis of X-ray spectra exhibited that the elemental powders had been transformed to the Ni3Al phase after the self-propagation high-temperature synthesis processing. Microstructure examination showed that the alloy without extrusion consisted of coarse and fine grains, but the subsequent hot extrusion procedure homogenized the grain size and densified the alloy obviously. Transmission electron microscopy observations on the Ni3Al alloy revealed that Ni3Al, γ-Ni and Al2O3 particles were the main phases. When the boron and chromium were added, besides the β-NiAl phase, α-Cr phase and some Cr7Ni3 particles with stacking faults inside were observed. In addition, a lot of substructure and high-density dislocation arrays were observed in the extruded part, which indicated that the subsequent extrusion had led to great deformation and partly recrystallizing in the alloy. Moreover, the subsequent extrusion procedure redistributed the Al2O3 particles and eliminated the γ-Ni. These changes were helpful to refine the microstructure and weaken the misorientation. The mechanical test showed that the self-propagation high-temperature synthesis with hot extrusion improved the mechanical properties of the Ni3Al alloy significantly. The addition of B and Cr in Ni3Al alloy increased the mechanical properties further, but the compressive strength of the alloy was still lower than that synthesized by combustion. Finally, the self-propagation high-temperature synthesis with hot extrusion was a good method to prepare Ni3Al alloy from powder.


2008 ◽  
Vol 584-586 ◽  
pp. 393-398 ◽  
Author(s):  
Nayar Lugo ◽  
Jose María Cabrera ◽  
Núria Llorca-Isern ◽  
C.J. Luis-Pérez ◽  
Rodrigo Luri ◽  
...  

Pure commercial Cu of 99,98 wt % purity was processed at room temperature by Equal- Channel Angular Pressing (ECAP) following route Bc. Heavy deformation was introduced in the samples after a considerable number of ECAP passes, namely 1, 4, 8, 12 and 16. A significant grain refinement was observed by transmission electron microscopy (TEM). Tensile and microhardness tests were also carried out on the deformed material in order to correlate microstructure and mechanical properties. Microhardness measurements displayed a quite homogeneous strain distribution. The most significative microstructural and mechanical changes were introduced in the first ECAP pass although a gradual increment in strength and a slight further grain refinement was noticed in the consecutive ECAP passes.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 627
Author(s):  
Haiding Liu ◽  
Dongzhe Wang ◽  
Linping Zhou ◽  
Jia She ◽  
Wei Wu

Ni-based superalloys have attracted much attention due to their good resistance to high-temperature and -pressure environments. Compared with the traditional 718 Ni-based superalloy, 945A Ni-based superalloy with a lower Ni content showed better performance in terms of precipitated hardening and corrosion resistance. In this study, the aging behavior and the evolution of mechanical properties of the wrought 945A Ni-based superalloy were investigated. Microstructures were analyzed by scanning electron microscopy (SEM), bright field transmission electron microscopy (TEM), high-resolution TEM and high-angle annular dark field scanning TEM. Mechanical properties were measured by tensile and compressive tests. The results illustrated that the compressive yield stress was significantly improved by increasing aging time from 229 to 809 MPa. The increase was greater than 220%. This improvement was mainly attributed to the precipitates of the  γ′ phase and carbides during the aging treatment. The residual dislocations generated by the plastic processes stimulated the formation of these precipitates. The precipitation behavior and the strengthening mechanism are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document