Fullerene-Metal Composites: Phase Transformations During Milling and Sintering

2011 ◽  
Vol 172-174 ◽  
pp. 727-732 ◽  
Author(s):  
Ileana Irais Santana ◽  
Francisco Carlos Robles Hernandez ◽  
Vicente Garibay-Febles ◽  
Hector A. Calderon

Composites of Fe-C60and Al C60produced by mechanical milling and sinterized by Spark Plasma Sintering are investigated with special attention to the mechanical properties of the products. The processing involves phase transformations of the fullerenes that are interesting to follow and characterize. This involves formation of tetragonal/rhombohedral diamond and carbides during sintering and milling. Transmission Electron Microscopy (TEM) and Raman Spectroscopy techniques are also used to confirm preliminary results of X Ray Diffraction (XRD) related to the formation of nanostructures i.e., grain size of the crystals during mechanical milling and after sintering, spatial distribution of phases and the different phases that are developed during processing.

2012 ◽  
Vol 512-515 ◽  
pp. 932-935
Author(s):  
Ying Peng ◽  
Zhi Jian Peng ◽  
Xiao Yong Ren ◽  
Hui Yong Rong ◽  
Cheng Biao Wang ◽  
...  

TiCN-based cermets with different amounts of SiC nano-whiskers were prepared by spark plasma sintering. The microstructure and mechanical properties of the as-prepared cermets were investigated. X-ray diffraction revealed that there were no SiC peaks detected, turning out some peaks of new carbide and silicate hard phases. Scanning electron microscopy indicated that there were more and more pores in the cermets with increasing amount of SiC whisker added, and the fracture mechanism of the cermets was mainly inter-granular fracture. With increasing addition amount of nano-SiC whisker, the hardness and flexural strength of the cermets increased first and decreased then, presenting the highest hardness (2170 HV) and flexural strength (750 MPa), respectively, when the addition content of nano-whiskers is 2.5 wt%.


2016 ◽  
Vol 704 ◽  
pp. 183-189
Author(s):  
Yong Jun Su ◽  
Yi Feng Zheng ◽  
De Liang Zhang ◽  
Fan Tao Kong

TiAl alloy with a composition of Ti-43Al-5V-4Nb-Y (at.%) was prepared by spark plasma sintering (SPS). The TiAl powders were sintered between 650°C and 1300°C for 5 min under different loads. With the increasing of the temperature, the diffusion of the elements can be observed. Full compaction is achieved in a short period of time and the overall processing duration does not exceed 30 min. A fully lamellar structure was seen in the TiAl alloy after heat treatment. The microstructures of the samples were determined by X-ray diffraction and scanning electron microscopy. Their mechanical properties were evaluated by tensile tests performed at room temperature


2012 ◽  
Vol 727-728 ◽  
pp. 982-987
Author(s):  
E. de Carvalho ◽  
Marcelo Bertolete ◽  
Izabel Fernanda Machado ◽  
E.N.S. Muccillo

Polycrystalline CaCu3Ti4O12 ceramics were prepared by solid state reactions by spark plasma sintering (SPS) technique. In this study, the effects of the dwell temperature on structural, microstructural and dielectric properties of CaCu3Ti4O12 ceramics have been investigated. Powder mixtures were calcined at 900°C for 18 h before SPS consolidation. The dwell temperatures were 850, 900, 915 and 930°C. Sintered pellets were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. X-ray diffraction patterns show evidences of a single-phase perovskite-type structure. The calculated lattice parameter is 7.40 Å. The hydrostatic density increases slightly with increasing dwell temperature. Scanning electron microscopy observations revealed a heterogeneous microstructure for all samples. The dielectric loss remains constant over a wide temperature range. The obtained permittivity is approximately 103 at 1 kHz. The increase of the dwell temperature is found to produce a brittle ceramic.


2004 ◽  
Vol 18 (01) ◽  
pp. 87-93 ◽  
Author(s):  
ZHIMIN WANG ◽  
YIDONG WU ◽  
YUANJIN HE

Crystals of MnSi 1.73 were prepared by Spark Plasma Sintering (SPS) technique, analyzed by X-ray diffraction (XRD), and invested by metalogragh and scanning electron microscopy (SEM). The growth processes of the samples were studied. It was found that the Mn–Si powders partly formed MnSi 1.73 crystals at 912–937 K under the mechanical pressure of 20 MPa in low vacuum (about 5.0 Pa), and fully formed MnSi 1.73 crystals after sintered at 1173 K for 15 minutes under 40 MPa.


Author(s):  
M. Kirn ◽  
M. Rühle ◽  
H. Schmid ◽  
L.J. Gauckler

It is expected that Si-Al-O-N alloys are important high temperature construction materials. The phase diagrams for Si-Al-O-N alloys were studied systematically mainly by X-ray diffraction work (for a summary see). Different stable phases were found. For the understanding of the physical and mechanical properties it is of great interest to know for the different stable phases the microstructure and the morphology, which can be obtained by TEM observations. Results of some TEM studies are reported here utilizing not only the conventional TEM but also the lattice fringe imaging technique.Specimens of the different phases were produced as described in They were prepared for TEM observations. For high resolution work a Siemens ELMISKOP 102 (operating voltage 125 kV) was used fitted with a double tilting stage (± 45°), for conventional TEM studies the specimens were examined in an AEI EM7 high voltage EM operated at 1 MeV.


2010 ◽  
Vol 1276 ◽  
Author(s):  
I. I. Santana García ◽  
V. Garibay Febles ◽  
H. A. Calderon

AbstractComposites of M-2.5 mol. % Fullerene C60 composites (where M= Fe or Al) are prepared by mechanical milling and Spark Plasma Sintering (SPS). The SPS technique has been used to consolidate the resulting powders and preserve the massive nanostructure. Results of X-Ray Diffraction and Raman Spectroscopy show that larger milling balls (9.6 mm in diameter) produce transformation of the fullerene phase during mechanical milling. Alternatively smaller milling balls (4.9 mm in diameter) allow retention of the fullerene phase. SEM shows homogeneous powders with different particle sizes depending on milling times. Sintering produces nanostructured composite materials with different reinforcing phases including C60 fullerenes, diamonds and metal carbides. The presence of each phase depends characteristically on the energy input during milling. Transmission Electron Microscopy (TEM) and Raman Spectroscopy show evidence of the spatial distribution and nature of phases. Diamonds and carbides can be identified for the sintered Fe containing composites with a relatively high volume fraction.


2007 ◽  
Vol 352 ◽  
pp. 197-200
Author(s):  
Mei Juan Li ◽  
Lian Meng Zhang ◽  
Z.D. Wei ◽  
Qiang Shen ◽  
Dong Ming Zhang

Nano-sized turbostritic-BN (t-BN) was fabricated through chemical process using boric acid and urea in this work. By the same method, the AlN powders coated with nano-BN were prepared too. The results of X-ray diffraction (XRD) and transmission electron microscope (TEM) revealed that nano-sized t-BN was synthesized at about 600°C in nitrogen gas and it surrounded the surface of AlN particles. High-density AlN/BN nano-composites were fabricated spark plasma sintering (SPS). Microstructure and properties of AlN/BN nano-composites (5~30vol% BN) were investigated. The h-BN flake particles were homogenously dispersed at AlN grain boundaries and within grains in the AlN/BN composites. A little nano-BN additions significantly improved the bending strength of the nano-composites. However, the bending strength was decreased with the BN content increasing. The thermal conductivity of AlN/BN nano-composites was investigated too.


2017 ◽  
Vol 748 ◽  
pp. 295-300 ◽  
Author(s):  
Rui Shuang Jiang ◽  
Bao Min Wang

In this work, two type graphene were dispersed in aqueous solution via sonication, and graphene nanoplatelets (GP) and graphene oxide (GO) were characterized by means of ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, the effects of different graphene (GP and GO) on mechanical properties and microstructure of cement-based materials were investigated via filed emission scanning electron microscopy (FESEM). The results suggested that the incorporation of GP and GO both improved the flexural and compressive strength of cement, and the GP had a more prominent impact on the strengths of cement, compared with GO. The flexural and compressive strength of cement increased up to 23.5% and 7.5% with 0.05 wt% GP, respectively. FESEM analysis indicated that the microstructure of GP-cement paste was similar to that of control sample without graphene, whereas, a few flower-like crystals were generated in GO-cement paste. This work could provide a new understanding for further researches of graphene-cement composites.


2012 ◽  
Vol 236-237 ◽  
pp. 113-117
Author(s):  
Song Wang ◽  
Ming Xie

W-26Re alloy was fabricated by spark plasma sintering (SPS) technology. The phases, microstructures and mechanical properties of the alloy were investigated by X-ray diffraction, optical light microscope, scanning electron microscope, energy dispersion spectroscope, digital display micro-hardness tester and tensile test. Results show that, using SPS technique can prepare W-26Re alloy with high density, fine grain and excellent mechanical properties. The relative density of W-26Re alloy was 96.2%. The main phases in the alloy were determined by the amount of (W) solid solution and the intermetallic  phases. The micro-hardness was 729HV, the ultimate tensile strength was 1680MPa, yield tensile strength was 1143MPa and elongation of alloy was 8.7%.


2011 ◽  
Vol 1312 ◽  
Author(s):  
Hamid Dalir ◽  
Rouhollah D. Farahani ◽  
Vireya Nhim ◽  
Benjamin Samson ◽  
Martin Lévesque ◽  
...  

ABSTRACTDifferent nanoclay mixing strategies using a three-roll mill and ultrasonication is proposed to obtain the desired polyester/nanoclay dispersion, intercalation, and exfoliation. The dispersion states of the modified nanoclay in polymer with 2, 4 and 6 wt% loading were characterized with X-ray diffraction, scanning electron microscopy (SEM), and low and high magnification transmission electron microscopy (TEM). The mechanical properties of the clay-reinforced polyester nanocomposites were a function of the nature and the content of the clay in the matrix. The nanocomposite containing 4 wt% modified Cloisite® 15A exhibits excellent improvement in modulus (by ~51%) and tensile strength (by ~12%) with a decrease in fracture strain (by ~26%) and fracture energy (by ~17%). These mechanical characteristic changes can be attributed to the dispersion, intercalation, and exfoliation of the nanoclays inside the polyester matrix.


Sign in / Sign up

Export Citation Format

Share Document