scholarly journals Effects of Facial Expression and Language on Trustworthiness and Brain Activities

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Shu Morioka ◽  
Michihiro Osumi ◽  
Mari Okamoto ◽  
Atsushi Matsuo

Social communication uses verbal and nonverbal language. We examined the degree of trust and brain activity when verbal and facial expressions are incongruent. Fourteen healthy volunteers viewed photographs of 8 people with pleasant (smile) or unpleasant expressions (disgust) alone or combined with a verbal [positive/negative] expression. As an index for degree of trust, subjects were asked to offer a donation when told that the person in the photograph was troubled financially. Positive emotions and degree of trust were evaluated using the Visual Analogue Scale (VAS). Event-related potentials (ERPs) were obtained at 170–240 ms after viewing the photographs. Brain activity during incongruent conditions was localized using standardized Low Resolution Brain Electromagnetic Tomography (sLORETA). VAS scores for positive × smile condition were significantly higher than those for the other conditions (p<0.05). The donation offered was significantly lower for incongruence between verbal and facial expressions, particularly for negative × smile condition. EEG showed more activity in the parietal lobe with incongruent than with congruent conditions. Incongruence [negative × smile] elicited the least positive emotion, degree of trust, and amount of offer. Our results indicate that incongruent sensory information increased activity in the parietal lobe, which may be a basis of mentalizing.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7274
Author(s):  
Pukyeong Seo ◽  
Hyun Kim ◽  
Kyung Hwan Kim

We investigated the spatiotemporal characteristics of brain activity due to sudden events during monotonous driving and how it changes with vigilance level. Two types of sudden events, emergency stop and car drifting, were presented using driving simulator, and event-related potentials (ERPs) were measured. From the ERPs of both types of events, an early component representing sensory information processing and a late component were observed. The early component was expected to represent sensory information processing, which corresponded to visual and somatosensory/vestibular information processing for the sudden stop and lane departure tasks, respectively. The late components showed spatiotemporal characteristics of the well-known P300 component for both types of events. Common characteristic brain activities occurred in response to sudden events, regardless of the type. The modulation of brain activity due to the vigilance level also shared common characteristics between the two types. We expect that our results will contribute to the development of an effective means to assist drivers’ reactions to ambulatory situations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Davide Valeriani ◽  
Caterina Cinel ◽  
Luca Citi ◽  
Riccardo Poli

AbstractIn this paper we present, and test in two realistic environments, collaborative Brain-Computer Interfaces (cBCIs) that can significantly increase both the speed and the accuracy of perceptual group decision-making. The key distinguishing features of this work are: (1) our cBCIs combine behavioural, physiological and neural data in such a way as to be able to provide a group decision at any time after the quickest team member casts their vote, but the quality of a cBCI-assisted decision improves monotonically the longer the group decision can wait; (2) we apply our cBCIs to two realistic scenarios of military relevance (patrolling a dark corridor and manning an outpost at night where users need to identify any unidentified characters that appear) in which decisions are based on information conveyed through video feeds; and (3) our cBCIs exploit Event-Related Potentials (ERPs) elicited in brain activity by the appearance of potential threats but, uniquely, the appearance time is estimated automatically by the system (rather than being unrealistically provided to it). As a result of these elements, in the two test environments, groups assisted by our cBCIs make both more accurate and faster decisions than when individual decisions are integrated in more traditional manners.


2005 ◽  
Vol 100 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Michela Balconi

The present research compared the semantic information processing of linguistic stimuli with semantic elaboration of nonlinguistic facial stimuli. To explore brain potentials (ERPs, event-related potentials) related to decoding facial expressions and the effect of semantic valence of the stimulus, we analyzed data for 20 normal subjects ( M age = 23.6 yr., SD = 0.2). Faces with three basic emotional expressions (fear, happiness, and sadness from the 1976 Ekman and Friesen database), with three semantically anomalous expressions (with respect to their emotional content), and the neutral stimuli (face without an emotional content) were presented in a random order. Differences in peak amplitude of ERP were observed later for anomalous expressions compared with congruous expressions. In fact, the results demonstrated that the emotional anomalous faces elicited a higher negative peak at about 360 msec., distributed mainly over the posterior sites. The observed electrophysiological activity may represent specific cognitive processing underlying the comprehension of facial expressions in detection of semantic anomaly. The evidence is in favour of comparability of this negative deflection with the N400 ERP effect elicited by linguistic anomalies.


1991 ◽  
Vol 3 (2) ◽  
pp. 151-165 ◽  
Author(s):  
Helen Neville ◽  
Janet L. Nicol ◽  
Andrew Barss ◽  
Kenneth I. Forster ◽  
Merrill F. Garrett

Theoretical considerations and diverse empirical data from clinical, psycholinguistic, and developmental studies suggest that language comprehension processes are decomposable into separate subsystems, including distinct systems for semantic and grammatical processing. Here we report that event-related potentials (ERPs) to syntactically well-formed but semantically anomalous sentences produced a pattern of brain activity that is distinct in timing and distribution from the patterns elicited by syntactically deviant sentences, and further, that different types of syntactic deviance produced distinct ERP patterns. Forty right-handed young adults read sentences presented at 2 words/sec while ERPs were recorded from over several positions between and within the hemispheres. Half of the sentences were semantically and grammatically acceptable and were controls for the remainder, which contained sentence medial words that violated (1) semantic expectations, (2) phrase structure rules, or (3) WH-movement constraints on Specificity and (4) Subjacency. As in prior research, the semantic anomalies produced a negative potential, N400, that was bilaterally distributed and was largest over posterior regions. The phrase structure violations enhanced the N125 response over anterior regions of the left hemisphere, and elicited a negative response (300-500 msec) over temporal and parietal regions of the left hemisphere. Violations of Specificity constraints produced a slow negative potential, evident by 125 msec, that was also largest over anterior regions of the left hemisphere. Violations of Subjacency constraints elicited a broadly and symmetrically distributed positivity that onset around 200 msec. The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.


1999 ◽  
Vol 11 (6) ◽  
pp. 598-609 ◽  
Author(s):  
Charan Ranganath ◽  
Ken A. Paller

Previous neuropsychological and neuroimaging results have implicated the prefrontal cortex in memory retrieval, although its precise role is unclear. In the present study, we examined patterns of brain electrical activity during retrieval of episodic and semantic memories. In the episodic retrieval task, participants retrieved autobiographical memories in response to event cues. In the semantic retrieval task, participants generated exemplars in response to category cues. Novel sounds presented intermittently during memory retrieval elicited a series of brain potentials including one identifiable as the P3a potential. Based on prior research linking P3a with novelty detection and with the frontal lobes, we predicted that P3a would be reduced to the extent that novelty detection and memory retrieval interfere with each other. Results during episodic and semantic retrieval tasks were compared to results during a task in which subjects attended to the auditory stimuli. P3a amplitudes were reduced during episodic retrieval, particularly at right lateral frontal scalp locations. A similar but less lateralized pattern of frontal P3a reduction was observed during semantic retrieval. These findings support the notion that the right prefrontal cortex is engaged in the service of memory retrieval, particularly for episodic memories.


2019 ◽  
Vol 11 (1) ◽  
pp. 80-115
Author(s):  
Eva Koderman

Abstract Anxiety is characterized by a sustained state of heightened vigilance due to uncertain danger, producing increased attention to a perceived threat in one's environment. To further examine this exploited the temporal resolution afforded by event-related potentials to investigate the impact of predictability of threat on early perceptual activity. We recruited 28 participants and utilized a within-subject design to examine hypervigilance in anticipation of shock, unpleasant picture and unpleasant sound during a task with unpredictable, predictable and no threat. We investigated if habituation to stimuli was present by asking the participants to rate unpleasantness and intensity of the stimuli before and after the experiment. We observed hypervigilance in the unpredictable threat of shock. Habituation was observed for the visual stimuli. The present study suggests that unpredictability enhances attentional engagement with neutral somatosensory stimuli when the threat is of the same modality, meaning we observed the presence of hypervigilance which is a characteristic of anxiety.


2020 ◽  
Author(s):  
Emily S. Kappenman ◽  
Jaclyn Farrens ◽  
Wendy Zhang ◽  
Andrew X Stewart ◽  
Steven J Luck

Event-related potentials (ERPs) are noninvasive measures of human brain activity that index a range of sensory, cognitive, affective, and motor processes. Despite their broad application across basic and clinical research, there is little standardization of ERP paradigms and analysis protocols across studies. To address this, we created ERP CORE (Compendium of Open Resources and Experiments), a set of optimized paradigms, experiment control scripts, data processing pipelines, and sample data (N = 40 neurotypical young adults) for seven widely used ERP components: N170, mismatch negativity (MMN), N2pc, N400, P3, lateralized readiness potential (LRP), and error-related negativity (ERN). This resource makes it possible for researchers to 1) employ standardized ERP paradigms in their research, 2) apply carefully designed analysis pipelines and use a priori selected parameters for data processing, 3) rigorously assess the quality of their data, and 4) test new analytic techniques with standardized data from a wide range of paradigms.


2021 ◽  
Vol 11 (11) ◽  
pp. 1506
Author(s):  
Annalisa Tosoni ◽  
Emanuele Cosimo Altomare ◽  
Marcella Brunetti ◽  
Pierpaolo Croce ◽  
Filippo Zappasodi ◽  
...  

One fundamental principle of the brain functional organization is the elaboration of sensory information for the specification of action plans that are most appropriate for interaction with the environment. Using an incidental go/no-go priming paradigm, we have previously shown a facilitation effect for the execution of a walking-related action in response to far vs. near objects/locations in the extrapersonal space, and this effect has been called “macro-affordance” to reflect the role of locomotion in the coverage of extrapersonal distance. Here, we investigated the neurophysiological underpinnings of such an effect by recording scalp electroencephalography (EEG) from 30 human participants during the same paradigm. The results of a whole-brain analysis indicated a significant modulation of the event-related potentials (ERPs) both during prime and target stimulus presentation. Specifically, consistent with a mechanism of action anticipation and automatic activation of affordances, a stronger ERP was observed in response to prime images framing the environment from a far vs. near distance, and this modulation was localized in dorso-medial motor regions. In addition, an inversion of polarity for far vs. near conditions was observed during the subsequent target period in dorso-medial parietal regions associated with spatially directed foot-related actions. These findings were interpreted within the framework of embodied models of brain functioning as arising from a mechanism of motor-anticipation and subsequent prediction error which was guided by the preferential affordance relationship between the distant large-scale environment and locomotion. More in general, our findings reveal a sensory-motor mechanism for the processing of walking-related environmental affordances.


Sign in / Sign up

Export Citation Format

Share Document