In vivo multimodal (MRI, SPECT) imaging of the 6-OHDA rat model for Parkinson's disease correlated with behavior and histology

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S392-S392
Author(s):  
Nadja Van Camp ◽  
Koen Van Laere ◽  
Ruth Vreys ◽  
Marleen Verhoye ◽  
Erwin Lauwers ◽  
...  
PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0202597 ◽  
Author(s):  
Vincent Perlbarg ◽  
Justine Lambert ◽  
Benjamin Butler ◽  
Mehdi Felfli ◽  
Romain Valabrègue ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1420
Author(s):  
Yun-Ting Jhao ◽  
Chuang-Hsin Chiu ◽  
Chien-Fu F. Chen ◽  
Ta-Kai Chou ◽  
Yi-Wen Lin ◽  
...  

Intra-striatal transplantation of fetal ventral mesencephalic (VM) tissue has a therapeutic effect on patients with Parkinson’s disease (PD). Sertoli cells (SCs) possess immune-modulatory properties that benefit transplantation. We hypothesized that co-graft of SCs with VM tissue can attenuate rejection. Hemi-parkinsonian rats were generated by injecting 6-hydroxydopamine into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats or pigs (rVM or pVM), with/without a co-graft of SCs (rVM+SCs or pVM+SCs). Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small animal-positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. Immunohistochemistry (IHC) examination was used to determine the survival of the grafted dopaminergic neurons in the striatum and to investigate immune-modulatory effects of SCs. The results showed that the rVM+SCs and pVM+SCs groups had significantly improved drug-induced rotational behavior compared with the VM alone groups. PET revealed a significant increase in specific uptake ratios (SURs) of [18F] DOPA and [18F] FE-PE2I in the grafted striatum of the rVM+SCs and pVM+SCs groups as compared to that of the rVM and pVM groups. SC and VM tissue co-graft led to better dopaminergic (DA) cell survival. The co-grafted groups exhibited lower populations of T-cells and activated microglia compared to the groups without SCs. Our results suggest that co-graft of SCs benefit both xeno- and allo-transplantation of VM tissue in a PD rat model. Use of SCs enhanced the survival of the grafted dopaminergic neurons and improved functional recovery. The enhancement may in part be attributable to the immune-modulatory properties of SCs. In addition, [18F]DOPA and [18F]FE-PE2I coupled with PET may provide a feasible method for in vivo evaluation of the functional integrity of the grafted DA cell in parkinsonian rats.


2020 ◽  
Vol 21 (8) ◽  
pp. 2743 ◽  
Author(s):  
Marco Sancandi ◽  
Pinar Uysal-Onganer ◽  
Igor Kraev ◽  
Audrey Mercer ◽  
Sigrun Lange

The identification of biomarkers for early diagnosis of Parkinson’s disease (PD) is of pivotal importance for improving approaches for clinical intervention. The use of translatable animal models of pre-motor PD therefore offers optimal opportunities for novel biomarker discovery in vivo. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that contribute to protein misfolding through post-translational deimination of arginine to citrulline. Furthermore, PADs are an active regulator of extracellular vesicle (EV) release. Both protein deimination and extracellular vesicles (EVs) are gaining increased attention in relation to neurodegenerative diseases, including in PD, while roles in pre-motor PD have yet to be investigated. The current study aimed at identifying protein candidates of deimination in plasma and plasma-EVs in a rat model of pre-motor PD, to assess putative contributions of such post-translational changes in the early stages of disease. EV-cargo was further assessed for deiminated proteins as well as three key micro-RNAs known to contribute to inflammation and hypoxia (miR21, miR155, and miR210) and also associated with PD. Overall, there was a significant increase in circulating plasma EVs in the PD model compared with sham animals and inflammatory and hypoxia related microRNAs were significantly increased in plasma-EVs of the pre-motor PD model. A significantly higher number of protein candidates were deiminated in the pre-motor PD model plasma and plasma-EVs, compared with those in the sham animals. KEGG (Kyoto encyclopedia of genes and genomes) pathways identified for deiminated proteins in the pre-motor PD model were linked to “Alzheimer’s disease”, “PD”, “Huntington’s disease”, “prion diseases”, as well as for “oxidative phosphorylation”, “thermogenesis”, “metabolic pathways”, “Staphylococcus aureus infection”, gap junction, “platelet activation”, “apelin signalling”, “retrograde endocannabinoid signalling”, “systemic lupus erythematosus”, and “non-alcoholic fatty liver disease”. Furthermore, PD brains showed significantly increased staining for total deiminated proteins in the brain vasculature in cortex and hippocampus, as well as increased immunodetection of deiminated histone H3 in dentate gyrus and cortex. Our findings identify EVs and post-translational protein deimination as novel biomarkers in early pre-motor stages of PD.


2017 ◽  
Vol 32 (6) ◽  
pp. 1791-1803 ◽  
Author(s):  
L. V. Darbinyan ◽  
L. E. Hambardzumyan ◽  
K. V. Simonyan ◽  
V. A. Chavushyan ◽  
L. P. Manukyan ◽  
...  

2020 ◽  
Author(s):  
Hyung Ho Yoon ◽  
Sunghyeok Ye ◽  
Sunhwa Lim ◽  
Seung Eun Lee ◽  
Soo-Jin Oh ◽  
...  

AbstractTo date, no publicly available disease-modifying therapy for Parkinson’s disease has been developed. This can be partly attributed to the absence of techniques for in vivo deletion of the SNCA gene (encoding α-synuclein), which is one of the key players in Parkinson’s disease pathology. In particular, A53T-mutated SNCA (A53T-SNCA) is one of the most studied familial pathologic mutations in Parkinson’s disease. Here we utilized a recently discovered genome editing technique, CRISPR/Cas9, to delete A53T-SNCA in vitro and in vivo. Among various CRISPR/Cas9 systems, SaCas9-KKH with a single guide RNA (sgRNA) targeting A53T-SNCA was packaged into adeno-associated virus. Adeno-associated virus carrying SaCas9-KKH significantly reduced A53T-SNCA levels in A53T-SNCA-overexpressed HEK293T cells, without off-target effects on wild-type SNCA. Furthermore, we tested the technique’s in vivo therapeutic potential in a viral A53T-SNCA overexpression rat model of Parkinson’s disease. Gene deletion of A53T-SNCA significantly prevented the overexpression of α-synuclein, dopaminergic neurodegeneration, and parkinsonian motor symptoms, whereas a negative control without sgRNA did not. Our findings propose CRISPR/Cas9 system as a potential therapeutic tool for A53T-SNCA familial Parkinson’s disease.


NeuroImage ◽  
2007 ◽  
Vol 37 (4) ◽  
pp. 1112-1121 ◽  
Author(s):  
Abesh Kumar Bhattacharjee ◽  
Lindsey M. Meister ◽  
Lisa Chang ◽  
Richard P. Bazinet ◽  
Laura White ◽  
...  

2011 ◽  
Vol 496 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Torsten Falk ◽  
Xu Yue ◽  
Shiling Zhang ◽  
Alexander D. McCourt ◽  
Brandon J. Yee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document