scholarly journals Contribution of Greening and High-Albedo Coatings to Improvements in the Thermal Environment in Complex Urban Areas

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Bonggeun Song ◽  
Kyunghun Park

The aim was to identify microclimate characteristics in relation to ground cover in green areas and the reflectivity of building coating materials. Furthermore, microclimate modeling of temperatures was conducted using ENVI-met, to analyze the effects of improved thermal environments based on increased green areas and increased reflectivity of exterior coatings. The accuracy of ENVI-met was validated through comparisons with field temperature measurements. The RMSE deviation of the predicted and actual field temperature values was 3–6°C; however, the explanatory power was as high as 60%. ENVI-met was performed for commercial and single residential areas that have high densities of artificial cover materials, before and after changes related to development of green areas and to increase in the reflectivity of coating materials. The results indicated that both areas exhibited distinct temperature reductions due to the creation of green spaces. When the reflectivity of the coating material was increased, a temperature increase was observed in all land-use types. Therefore, in order to improve the thermal environment of complex urban areas, it is necessary to improve green-area development and to use high-reflectivity ground and building cover materials, while taking into account the spatial characteristics of land-use types and their surrounding areas.

2020 ◽  
Vol 12 (23) ◽  
pp. 9971
Author(s):  
Chang-Seong Kim ◽  
Maimoona Raza ◽  
Jin-Yong Lee ◽  
Heejung Kim ◽  
Chanhyeok Jeon ◽  
...  

Factors controlling the spatial distribution and temporal trend of groundwater quality at a national scale are important to investigate for sustaining livelihood and ecological balance. This study evaluated groundwater quality data for 12 parameters (n = 6405 for each parameter), collected from 97 groundwater monitoring stations (=289 monitoring wells) for ten years. Spatial distribution of groundwater quality parameters varied through the regional scale. Six parameters: T, EC, Ca2+, Mg2+, HCO3−, and Cl− were having dominant increasing trend, remaining pH, Eh, Na+, K+, SO42−, and NO3− showed a dominant decreasing trend over time. Among land use types, the upland fields had the highest mean of groundwater NO3− (22.2 mg/L), confirming plenty of application of fertilizers (5–10 kg/a more than standard) to upland fields. Means of groundwater Cl− and Na+ (705.3 and 298.4 mg/L, respectively) in the residential areas are greater than those in other land use types by 408–685.9, 154.3–274.2 mg/L, respectively. Agricultural activities were the main controlling factor of groundwater NO3− contamination in rural areas, domestic activities were responsible for groundwater Cl− and Na+ in urban areas, and seawater intrusion was controlling groundwater Cl− in coastal areas (within 10 km from sea). Groundwater hydrochemistry was controlled by the mechanism of geogenic rock and evaporation dominance. The rock dominance mechanism indicated that groundwater was interacting with rocks and resulted in groundwater chemistry. The findings of this study showed that groundwater was mainly contaminated by anthropogenic factors in some rural and residential areas. Effective measures by government authorities are needed to improve the groundwater quality.


2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Stefan Nickel ◽  
Winfried Schröder

Abstract Background The aim of the study was a statistical evaluation of the statistical relevance of potentially explanatory variables (atmospheric deposition, meteorology, geology, soil, topography, sampling, vegetation structure, land-use density, population density, potential emission sources) correlated with the content of 12 heavy metals and nitrogen in mosses collected from 400 sites across Germany in 2015. Beyond correlation analysis, regression analysis was performed using two methods: random forest regression and multiple linear regression in connection with commonality analysis. Results The strongest predictor for the content of Cd, Cu, Ni, Pb, Zn and N in mosses was the sampled species. In 2015, the atmospheric deposition showed a lower predictive power compared to earlier campaigns. The mean precipitation (2013–2015) is a significant factor influencing the content of Cd, Pb and Zn in moss samples. Altitude (Cu, Hg and Ni) and slope (Cd) are the strongest topographical predictors. With regard to 14 vegetation structure measures studied, the distance to adjacent tree stands is the strongest predictor (Cd, Cu, Hg, Zn, N), followed by the tree layer height (Cd, Hg, Pb, N), the leaf area index (Cd, N, Zn), and finally the coverage of the tree layer (Ni, Cd, Hg). For forests, the spatial density in radii 100–300 km predominates as significant predictors for Cu, Hg, Ni and N. For the urban areas, there are element-specific different radii between 25 and 300 km (Cd, Cu, Ni, Pb, N) and for agricultural areas usually radii between 50 and 300 km, in which the respective land use is correlated with the element contents. The population density in the 50 and 100 km radius is a variable with high explanatory power for all elements except Hg and N. Conclusions For Europe-wide analyses, the population density and the proportion of different land-use classes up to 300 km around the moss sampling sites are recommended.


2019 ◽  
Vol 47 (7) ◽  
pp. 1219-1236 ◽  
Author(s):  
Ha Na Im ◽  
Chang Gyu Choi

This study proposes an alternative to the conventional entropy-based land use mix index, which is generally used to measure the diversity of land use. Pedestrian volume was selected as the dependent variable as it represents the vitality of districts, which many recent urban studies now consider important. The study investigates an entropy-based weighted land use mix index, which is weighted by different land use types. For the index, different areas are needed to generate a unit of pedestrian volume, whose measure is m2/person/day. The study demonstrates that this alternative is more effective than the existing conventionally used entropy-based land use mix index for explaining pedestrian volume. The research confirms that the conventionally used entropy-based land use mix index can have a positive or negative impact depending on the land use characteristics of the survey points because the conventionally used entropy-based land use mix index has a non-linear relationship with pedestrian volume. By analysing 9727 surveyed locations of pedestrian volume in Seoul, Korea, the study demonstrates that the weighted land use mix index, rather than the conventionally used entropy-based land use mix index, can improve the explanatory power of the estimation model for the relationship between pedestrian volume and built environments, showing consistent results throughout the empirical analysis. In future built-environment studies, the utility of the weighted land use mix index is expected to improve if studies include how to find the accurate weighting of the land use in estimating the pedestrian volume.


Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 101 ◽  
Author(s):  
Janis Arnold ◽  
Janina Kleemann ◽  
Christine Fürst

Urban ecosystem services (ES) contribute to the compensation of negative effects caused by cities by means of, for example, reducing air pollution and providing cooling effects during the summer time. In this study, an approach is described that combines the regional biotope and land use data set, hemeroby and the accessibility of open space in order to assess the provision of urban ES. Hemeroby expresses the degree of naturalness of land use types and, therefore, provides a differentiated assessment of urban ES. Assessment of the local capacity to provide urban ES was conducted with a spatially explicit modeling approach in the city of Halle (Saale) in Germany. The following urban ES were assessed: (a) global climate regulation, (b) local climate regulation, (c) air pollution control, (d) water cycle regulation, (e) food production, (f) nature experience and (g) leisure activities. We identified areas with high and low capacity of ES in the urban context. For instance, the central parts of Halle had very low or no capacity to provide ES due to highly compact building styles and soil sealing. In contrast, peri-urban areas had particularly high capacities. The potential provision of regulating services was spatially limited due to the location of land use types that provide these services.


2013 ◽  
Vol 12 (4) ◽  
pp. 426-434 ◽  
Author(s):  
Shuko Hamada ◽  
Takafumi Tanaka ◽  
Takeshi Ohta

2015 ◽  
Vol 7 (6) ◽  
pp. 1196
Author(s):  
Tiago Henrique de Oliveira ◽  
José Gleidson Dantas ◽  
Josiclêda Domiciano Galvíncio ◽  
Rejane Magalhães de Mendonça Pimentel ◽  
Milton Botler

As rápidas mudanças do uso e cobertura do solo em ambiente urbano apresentam grande impacto nas relações entre os ciclos energéticos e hidrológicos sobre a superfície. O município do Recife, através da Lei de Uso e Ocupação do Solo de 1996 (Lei nº 16.176/96) define área verde como “toda área de domínio público ou privado, em solo natural,onde predomina qualquer forma de vegetação, distribuída em seus diferentes estratos: Arbóreo, Arbustivo e Herbáceo /Forrageira, nativa ou exótica”. O objetivo deste artigo é analisar a variação espacial das áreas verdes disponíveis no município do Recife e a evolução espaço-temporal da qualidade ambiental na RPA 4 através do computo do Índice de umidade (NDWI), Índice de Área Foliar (IAF) e Temperatura da superfície em imagens TM Landsat. Foi realizada uma classificação supervisionada na ortofotocarta Recife onde as áreas verdes foram exportadas para polígonos, permitindo a sua quantificação. Para as imagens TM foi aplicada parte da metodologia SEBAL. As áreas verdes ocupam 45,58% do Recife. Os transectos lineares e perfis permitiram visualizar mais facilmente as mudanças espaço-temporais ocorridos na RPA-4. Foi visualizada grande diferença de temperatura entre as áreas vegetadas e as áreas mais urbanizadas. Palavras-chave: Uso e ocupação do solo; área urbana, áreas vegetadas, sensoriamento remoto; MAXVER. A B S T R A C T The rapid change of use and land cover in urban environment poses great impact on relations between energy and hydrological cycles on the surface. The municipality of Recife, through the Land Use Legislation from 1996 (Law No. 16.176/96) defines green area as ";;;;;;any public or private domain area, in natural soil, where overcrows any form of vegetation, distributed in its different layers: Arboreal, shrubby and Herbaceous Forage, native or exotic";;;;;;. The goal of this paper is to analyze the spatial variation of available green areas in the city of Recife and the spatio-temporal evolution of environmental quality in the Political Administrative Region 4, known as RPA-4, through the calculation of moisture content (NDWI), leaf area index (LAI) and the surface temperature from Landsat TM images. Supervised classification was performed on orthophoto Reef where the green areas were exported to polygons, allowing its quantification. For the TM images, it has been applied the methodology SEBAL. The green areas occupy 45.58% of Recife. The linear transects and profiles allowed to show more easily space-time changes occurring in the RPA-4. Large temperature differences have been displayed between the most vegetated areas and more urbanized areas. Key-words: Land use; urban areas; vegetated area, remote sensing; MAXVER.


2020 ◽  
Author(s):  
Long Ho ◽  
Ruben Jerves-Cobo ◽  
Matti Barthel ◽  
Johan Six ◽  
Samuel Bode ◽  
...  

Abstract. Rivers act as a natural source of greenhouse gases (GHGs) that can be released from the metabolisms of aquatic organisms. Anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG emissions. To investigate these impacts, we assessed the emissions of CO2, CH4, and N2O from Cuenca urban river system (Ecuador). High variation of the emissions was found among river tributaries that mainly depended on water quality and neighboring landscapes. By using Prati and Oregon Indexes, a clear pattern was observed between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality deteriorated from acceptable to very heavily polluted, their global warming potential (GWP) increased by ten times. Compared to the average estimated emissions from global streams, rivers with polluted water released almost double the estimated GWP while the proportion increased to ten times for very heavily polluted rivers. Conversely, the GWP of good-water-quality rivers was half of the estimated GWP. Furthermore, surrounding land-use types, i.e. urban, roads, and agriculture, significantly affected the river emissions. The GWP of the sites close to urban areas was four time higher than the GWP of the nature sites while this proportion for the sites close to roads or agricultural areas was triple and double, respectively. Lastly, by applying random forests, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the emissions. Conversely, low impact of organic matter and nitrate concentration suggested a higher role of nitrification than denitrification in producing N2O. These results highlighted the impacts of land-use types on the river emissions via water contamination by sewage discharges and surface runoff. Hence, to estimate of the emissions from global streams, both their quantity and water quality should be included.


GeoScape ◽  
2021 ◽  
Vol 15 (2) ◽  
pp. 104-119
Author(s):  
Navid Forouhar ◽  
Amir Forouhar ◽  
Mahnoosh Hasankhani

Abstract Land-use planning generally aims to manage the development of urban areas to address the needs of the communities. In this regard, the multiple and often competing environmental, economic and social conflicts complicate the process of land-use planning. Commercial development in residential neighbourhoods is a common type of land-use conflict that can dramatically exacerbate these potential conflicts. Over the recent decades, many affluent neighbourhoods of Tehran Metropolis (the capital of Iran) have been confronted with an unbridled development of commercial activities within the residential areas. This paper seeks to understand the process of land-use change and its impacts on the residents’ quality of life in an affluent neighbourhood of Tehran Metropolis (Gisha Neighbourhood) by adopting a combination of quantitative and qualitative methods of impact assessment including semi-structured interview, purposeful field survey, and traffic survey. The results yield that incompatible land-use policies of the Tehran Comprehensive Plan and structural defects in the land-use change regulations led to an unbridled process of commercialisation which intensified non-local activities with city/regional service coverage along the main streets of Gisha Neighbourhood. The analysis demonstrates that despite improving the accessibility of residents to urban facilities and reducing their travel time/cost, the process of land-use changes in Gisha Neighbourhood declined the residents’ quality of life by its considerable negative effects on socio-cultural structures, landuse patterns, traffic flow, and human health in the residential areas of the neighbourhood.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Camelia Sabina Botezan ◽  
Andrei Radovici ◽  
Iulia Ajtai

Urban growth triggers massive changes in land use cover, exacerbating extreme natural and technological events. In order for land use planning to be efficient, it requires the integration of comprehensive risk and vulnerability assessment. This paper aims to create a bridge between the existing vulnerability theories and their implementation in land use planning policies and proposes an innovative approach to determine whether the changes in the territorial dynamics of cities draw considerable changes in communities’ social vulnerability. The methodology identifies and selects three case studies from the Urban Atlas inventory, representative of the dynamics of large Romanian cities, taking into consideration the following hazards: earthquakes, floods, and technological hazards. Vulnerability was then assessed by assigning each land use class a specific vulnerability level. The methodology involved assessing the level of vulnerability specific to the situation in 2018 compared to 2006. The results showed that major changes in land use are related to the transition of areas with a low level of vulnerability to areas with a higher level of vulnerability as a result of the urban areas expansion to the detriment of natural and agricultural areas. This is generally translated into a higher degree of vulnerability due to an increased density of artificial elements and of population in the residential areas. The findings of the study of territorial dynamics in the proximity of large industrial operators did not reveal a tendency that differed from the general trend. Although many territorial changes have been observed in the period 2006–2018, it is necessary to extend the analysis, with the issue of the new versions of the Urban Atlas, to confirm the identified trends and to express the up-to-date situation.


Sign in / Sign up

Export Citation Format

Share Document