scholarly journals Comparative Study on Particles Formation in a Diesel Engine When Lubricating Oil Involved in Fuel Combustion

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Lihui Dong ◽  
Weiqiang Han ◽  
Xingyu Liang ◽  
Yuesen Wang

The effect of lubricating oil on the morphology of particulate matter (PM) was studied in a diesel engine fueled with pure diesel fuel and blended fuel containing 0.5% by weight of lubricating oil. Particulate matter emitted by diesel engines is formed primarily by soot agglomerates which are composed of primary particles. In this paper, particulate matter was collected with a thermophoretic sampling system, and a high-resolution transmission electron microscope (TEM) was used to investigate the primary particles. A Fast Particulate Spectrometer, DMS 500, was used to determine the particle size distributions. The TEM results indicated that the mean diameters of the primary particles increased after the oil was added into the fuel. Particle size distributions results showed that lubricating oil in the fuel gave rise to a higher concentration in nucleation mode.

Author(s):  
Yuebin Wu ◽  
Nigel N. Clark ◽  
Daniel K. Carder

In 2007, U.S. certification standards for heavy duty on-road diesel engine particulate matter (PM) emissions were reduced from 0.1g/bhp-hr to 0.01g/bhp-hr, representing an order of magnitude reduction in pollutant level. The Tier 4 standards for nonroad diesel engines, being phased in from 2008 through 2015, also require similar level of reduction in PM. Most conventional diesel engines could meet these low PM standards, once equipped with a diesel particulate filter (DPF). However, accurate, repeatable measurements of this PM may pose significant challenges. Gravimetric PM measurement involves diluting exhaust, then collecting the resultant aerosol sample on approved filter media. Few data exist to characterize the evolution of particulate matter (PM) in dilution tunnels, particularly at very low PM mass levels. Data are lacking as well, for PM evolution in portable dilution instruments and in exhaust plumes downstream of the tailpipe. Size distributions of ultra-fine particles in the diesel exhaust from a naturally aspirated ISUZU C240 diesel engine, equipped with a DPF, were studied. Particle size distribution data, during steady-state engine operations, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. The effects of dilution ratios, dilution rates, and residence times on the diesel particulate matter (DPM) size distributions were analyzed and discussed. Measurements were made for three dilution methods: dilution in standard primary and secondary-dilution tunnels with a full scale Constant Volume Sampler (CVS) system, instrument dilution with a Portable Particulate Measurement Device (PPMD), and ambient dilution at the post-tailpipe exhaust plume centerline. Gaseous emissions measurements were utilized as surrogate confirmation of adequate mixing at the various measurement locations, as well as an indicator of dilution ratios. Tunnel sample results indicated varying size distributions at tunnel cross sections where the flow was still developing. Evolution of particle-size distributions was observed even for fully mixed primary flow conditions. Size distributions at the end of the secondary dilution tunnel were observed to vary with different secondary-dilution ratios. Particle-size distributions of post-tailpipe and PPMD test results were analyzed and compared with those results collected from the full-flow tunnel. Results from post-tailpipe sampling indicate that nucleation was the dominant process when the exhaust plume was diluted along the post-tailpipe centerline. Results from PPMD dilution measurements indicate that change of particle-size-distribution curves, including number count and mass concentration levels, were not as strongly correlated to dilution ratios as were the results from the other two sampling methods. This study shows that particle-size distributions measured inside full-flow dilution tunnel can adequately mimic freshly emitted exhaust sampled immediately post-tailpipe.


2019 ◽  
Vol 62 (2) ◽  
pp. 415-427 ◽  
Author(s):  
Reyna M. Knight ◽  
Xinjie Tong ◽  
Zhenyu Liu ◽  
Sewoon Hong ◽  
Lingying Zhao

Abstract. Poultry layer houses are a significant source of particulate matter (PM) emissions, which potentially affect worker and animal health. Particulate matter characteristics, such as concentration and size distribution inside layer houses, are critical information for assessment of the potential health risks and development of effective PM mitigation technologies. However, this information and its spatial and seasonal variations are lacking for typical layer facilities. In this study, two TSI DustTrak monitors (DRX 8533) and an Aerodynamic Particle Sizer (APS 3321) were used to measure PM mass concentrations and number-weighted particle size distributions in two typical manure-belt poultry layer houses in Ohio in three seasons: summer, autumn, and winter. Bimodal particle size distributions were consistently observed. The average count median diameters (mean ±SD) were 1.68 ±0.25, 2.16 ±0.31, and 1.87 ±0.07 µm in summer, autumn, and winter, respectively. The average geometric standard deviations of particle size were 2.16 ±0.23, 2.16 ±0.18, and 1.74 ±0.17 in the three seasons, respectively. The average mass concentrations were 67.4 ±54.9, 289.9 ±216.2, and 428.1 ±269.9 µg m-3 for PM2.5; 73.6 ±59.5, 314.6 ±228.9, and 480.8 ±306.5 µg m-3 for PM4; and 118.8 ±99.6, 532.5 ±353.0, and 686.2 ±417.7 µg m-3 for PM10 in the three seasons, respectively. Both statistically significant (p < 0.05) and practically significant (difference of means >20% of smaller value) seasonal variations were observed. Spatial variations were only practically significant for autumn mass concentrations, likely due to external dust infiltration from nearby agricultural activities. The OSHA-mandated permissible exposure limit for respirable PM was not exceeded in any season. Keywords: Air quality, Particulate matter, Poultry housing, Seasonal variation, Spatial variation.


Metrologia ◽  
2013 ◽  
Vol 50 (6) ◽  
pp. 663-678 ◽  
Author(s):  
Stephen B Rice ◽  
Christopher Chan ◽  
Scott C Brown ◽  
Peter Eschbach ◽  
Li Han ◽  
...  

2019 ◽  
Vol 150 ◽  
pp. 1168-1176 ◽  
Author(s):  
Teemu Ovaska ◽  
Seppo Niemi ◽  
Katriina Sirviö ◽  
Olav Nilsson ◽  
Kaj Portin ◽  
...  

2020 ◽  
Vol 20 (21) ◽  
pp. 12721-12740
Author(s):  
Jing Cai ◽  
Biwu Chu ◽  
Lei Yao ◽  
Chao Yan ◽  
Liine M. Heikkinen ◽  
...  

Abstract. Although secondary particulate matter is reported to be the main contributor of PM2.5 during haze in Chinese megacities, primary particle emissions also affect particle concentrations. In order to improve estimates of the contribution of primary sources to the particle number and mass concentrations, we performed source apportionment analyses using both chemical fingerprints and particle size distributions measured at the same site in urban Beijing from April to July 2018. Both methods resolved factors related to primary emissions, including vehicular emissions and cooking emissions, which together make up 76 % and 24 % of total particle number and organic aerosol (OA) mass, respectively. Similar source types, including particles related to vehicular emissions (1.6±1.1 µg m−3; 2.4±1.8×103 cm−3 and 5.5±2.8×103 cm−3 for two traffic-related components), cooking emissions (2.6±1.9 µg m−3 and 5.5±3.3×103 cm−3) and secondary aerosols (51±41 µg m−3 and 4.2±3.0×103 cm−3), were resolved by both methods. Converted mass concentrations from particle size distributions components were comparable with those from chemical fingerprints. Size distribution source apportionment separated vehicular emissions into a component with a mode diameter of 20 nm (“traffic-ultrafine”) and a component with a mode diameter of 100 nm (“traffic-fine”). Consistent with similar day- and nighttime diesel vehicle PM2.5 emissions estimated for the Beijing area, traffic-fine particles, hydrocarbon-like OA (HOA, traffic-related factor resulting from source apportionment using chemical fingerprints) and black carbon (BC) showed similar diurnal patterns, with higher concentrations during the night and morning than during the afternoon when the boundary layer is higher. Traffic-ultrafine particles showed the highest concentrations during the rush-hour period, suggesting a prominent role of local gasoline vehicle emissions. In the absence of new particle formation, our results show that vehicular-related emissions (14 % and 30 % for ultrafine and fine particles, respectively) and cooking-activity-related emissions (32 %) dominate the particle number concentration, while secondary particulate matter (over 80 %) governs PM2.5 mass during the non-heating season in Beijing.


2011 ◽  
Vol 11 ◽  
pp. 1371-1378 ◽  
Author(s):  
An Puzun ◽  
Sun Wanchen ◽  
Li Guoliang ◽  
Tan Manzhi ◽  
Lai Chunjie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document