scholarly journals Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Gideon Siringi ◽  
Ali Abolmaali ◽  
Pranesh B. Aswath

Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 437
Author(s):  
V R.Prasath Kumar ◽  
K Gunasekaran ◽  
Sreerag K P

High standing estimation of building materials utilized for development is a component of incredible concern. Coconut shell as a completely substitution in the place of coarse aggregate may totally effective for designers in construction industry. The coconut shell concrete is a light weight solid which may decrease the self-heap of a structure. The under taken project depends on inspecting attributes of coconut shell concrete when contrasted with conventional concrete. Coconut shells going from 10mm strainer and held on 6.3mm were considered to utilize for this study. For the current study M100 grade concrete is used to cast the specimens. The principle properties considered testing on coconut shell concrete and conventional concrete is compressive strength, split tensile strength and flexural strength. Examples were taken by supplanting coarse aggregate with coconut shells completely and cement is supplanted by silica fume with various extents of 5%, 10%, 15%, 20%, 25% for compressive strength test and tests were done at 3, 7, 28, 56 and 90 days of curing, it is observed that the ideal compressive strength outcomes were obtained at 10% of silica fume. The flexural strength and  split tensile strength of the specimens are calculated with replacement of cement by silica fume with  different extents of 0%, 5%, 10% and 15%, tests were done at 3, 7 and 28 days of curing. The optimum replacement percentage of cement by silica fume is 10% for compressive strength, split tensile and flexural strength. The primary principle is to lessen the utilization of natural aggregate by supplanting them with coconut shells and to decrease the density of concrete which makes concrete for simple dealing.  


Transfer of tyre rubber suit a tremendous difficulty in India step by step. Analysts are attempting to utilize waste rubber in structural building venture from numerous days back. When coarse aggregate was replaced with 20% chipped rubber it was found that the optimum replacement is5% but still there is a deficit in some strength from conventional concrete. This research programme tries to minimise this gap by adding extra 5% micro silica of the weight of cement and also by replacing 40% of cement by GGBS. Here cubes, cylinders, and prisms were casted to test compressive strength, tensile strength, flexural strength, and durability against heat and were observed after 28 days and 56 days


Author(s):  
Adetoye T. Oyebisi ◽  
Cordelia O. Osasona

This research studied strength-characteristics of concrete using waste tyre-rubber as partial replacement for coarse aggregate in concrete construction and compares the results to those of conventional concrete. The specimens were produced with percentage replacements of the coarse aggregate by 5%, 10% and 15 % of rubber aggregate. A control mix with no replacement of the coarse aggregate was produced, to make a comparative analysis. The samples consisted of concrete cubes, cylinders and beams. Various tests (such as slump, compressive strength, splitting tensile strength and flexural strength tests), were conducted. Data-collection was mainly based on the results of the tests conducted on the specimens in the laboratory. The results show that there is a reduction in the compressive strength of the concrete, due to the inclusion of rubber aggregates. Compressive strength losses of 12.69%, 17.75% and 25.33% were noticed for 5%, 10%, 15% replacement of coarse aggregate, respectively; tensile strength losses of 13.01%, 20.12%, and 24.76% were observed, respectively, when 5%, 10%, 15% of the coarse aggregate was replaced, after 28 days of curing; -0.1%, -0.15% and 0.2% decrease in flexural strength was observed for 5%, 10% and 15% replacement, respectively, after curing for 28 days. Rubberised concrete was found to have some desirable characteristics (such as lower density, enhanced ductility, and a slight increase in flexural strength in the lower compressive strength concrete categories). The overall results show that it is possible to use recycled rubber tyres in concrete construction, as a partial replacement for coarse aggregates. Nevertheless, the percentage of replacement should be limited to 10% (which ensures the strength of the concrete is kept within the required range), and the application should be restricted to particular cases where the properties related to the replacement with the rubber aggregates clearly indicate an improvement on conventional concrete, and so are desirable.


2020 ◽  
Vol 6 (12) ◽  
pp. 2416-2424
Author(s):  
Erniati Bachtiar ◽  
Mustaan Mustaan ◽  
Faris Jumawan ◽  
Meldawati Artayani ◽  
Tahang Tahang ◽  
...  

This study aims to examine the effect of recycled Polyethylene Terephthalate (PET) artificial aggregate as a substitute for coarse aggregate on the compressive strength and flexural strength, and the volume weight of the concrete. PET plastic waste is recycled by heating to a boiling point of approximately 300°C. There are five variations of concrete mixtures, defined the percentage of PET artificial aggregate to the total coarse aggregate, by 0, 25, 50, 75 and 100%. Tests carried out on fresh concrete mixtures are slump, bleeding, and segregation tests. Compressive and flexural strength tests proceeded based on ASTM 39/C39M-99 and ASTM C293-79 standards at the age of 28 days. The results showed that the use of PET artificial aggregate could improve the workability of the concrete mixture. The effect of PET artificial aggregate as a substitute for coarse aggregate on the compressive and flexural strength of concrete is considered very significant. The higher the percentage of PET plastic artificial aggregate, the lower the compressive and flexural strength, and the volume weight, of the concrete. Substitution of 25, 50, 75 and 100% of PET artificial aggregate gave decreases in compressive strength of 30.06, 32.39, 41.73 and 44.06% of the compressive strength of the standard concrete (18.20 MPa), respectively. The reductions in flexural strength were by respectively 19.03, 54.50, 53.95 and 61.00% of the standard concrete's flexural strength (3.59 MPa). The reductions in volume weight of concrete were by respectively 8.45, 17.71, 25.07 and 34.60% of the weight of the standard concrete volume of 2335.4 kg/m3 Doi: 10.28991/cej-2020-03091626 Full Text: PDF


2018 ◽  
Author(s):  
Erniati Bachtiar

Concrete construction technology is directed to be sustainable and ecofriendly. The waste of the candlenut shell as a substitute for the coarse aggregate of concrete mixture is known that the candlenut shell has a hard texture so it may be used as a substitute for coarse aggregates in concrete. The purpose of the research was to determine the effect of Candlenut shell as a substitute of coarse aggregate on physical properties (slump test, bleeding, segregation, volume weight) and mechanical properties (compressive strength and tensile strength) of concrete using Candlenut shell as replacement material of the coarse aggregate. The variation of the research was percentage of the Candlenut shell in the concrete mixture, that was 0%, 25%, 50%, 75% and 100% to the coarse aggregate volume in the concrete mixture. Number of specimens in reseach was each 5 pieces each variation. Testing of mechanical properties of concrete (compressive strength and tensile strength) was performed at 28 days. Testing of the concrete for compressive strength test and tensile strength on age 28 days. Concrete using candlenut shell as a substitute of coarse aggregates has decreased compressive strength respectively 11.72 MPa (37.71%) for 25% candlenut shell; 15.54 MPa (50.00%) for 50% candlenut shell; 18.35 MPa (59.02%) for 75% candlenut shell; And 18,85 MPa (60,66%) for 100% candlenut shell from of the 0% candlenut shell with compressive strength of 31.08 Mpa. Concrete using for 25% candlenut shell as a substitute for coarse aggregates decreased tensile strength respectively of 0.95 MPa (28.70%) for 25% candlenut shell; 1.21 MPa (36.56%) for 50% candlenut shell; 1.27 MPa (38.37%) for 75% candlenut shell; And 1.40 MPa (42.30%) for 100% candlenut shell from of the 0% candlenut shell with the tensile strength of BN of 3.31 MPa. The decrease in the value of compressive strength and tensile strength is strongly influenced by the increasing percentage of Candlenut shells on concrete


Author(s):  
S.E Ubi ◽  
P.O Nkra ◽  
R.B Agbor ◽  
D.E Ewa ◽  
M. Nuchal

This present research was on the comparison of the efficacious use of basalt and granite as coarse aggregates in concrete work. In order to obtain the basis for comparison, physical and structural tests were conducted on the different materials of the concrete and the concrete samples respectively. Physical test results revealed that basalt have a specific gravity of 2.8 and 2.5, while granite have a specific gravity of 2.9 and 2.6. In density, basalt have a density of 1554.55kg/m3 while granite had a density of 1463.64kg/m3. Aggregate impact test conducted on both aggregates revealed a percentage of 11.05% for basalt and 12.63% for granite. The following structural tests were carried out: compressive strength tests, flexural and tensile strength test and the comparative results are as follows. Compressive strength for basalt 36.39N/mm2 while 37.16N/mm2 for granite. 24.81N/mm2 tensile strength for basalt while 12.57N/mm2 for granite, 31.83N/mm2 flexural strength for basalt while 27.97N/mm2 for granite. From the above results, it can be deduced that basalt has higher strength properties than granite. Therefore, more suitable for coarse aggregate in achieving higher strength with some quantity of other composition of the concrete mix when compared to granite.


Author(s):  
Ali Ahmed ◽  
Shakir Ahmad ◽  
Muhammad Mannal Kaleem ◽  
Muhammad Bilal Zahid

Current study explores the possibility of improvement in various categories of concrete’s strengths (including tensile strength, flexural strength etc.) by using methylcellulose as an additive. The effect of methylcellulose on concrete’s compressive strength has also been investigated experimentally. Concrete samples were casted with several methylcellulose to binder ratios varying from 0.002 to 0.01 by weight of cement. Several tests were performed on concrete specimens including concrete cylinder and cube compression tests, split cylinder tests and modulus of rupture tests. Results showed that addition of methylcellulose increased the tensile strength of concrete. Addition of 0.2% of methylcellulose increased the tensile strength of concrete by 16%. This increase in tensile strength reached up to 73% of the control sample on addition of 1% methylcellulose. It was observed that the effect of methylcellulose on compressive strength of concrete depends upon the type of samples being tested (cube or cylinder). The compressive strength of concrete cylinders showed a plateau behavior with peak at 0.4% methylcellulose content with an increase of 18.7%. Effect of methylcellulose on concrete cylinder strength becomes insignificant beyond 0.6%. It was observed that addition of methylcellulose reduces the modulus of rupture values. The reduction in MOR was only 3% at 0.2% methylcellulose content but it grew to 30% at 1% methylcellulose content. The research presents an effective way of increasing tensile strength of concrete but without significant effect on concrete’s compressive strength and modulus of rupture values. These findings can be used to determine optimum content of methylcellulose to achieve desired performance from concrete depending upon the intended use.


Sign in / Sign up

Export Citation Format

Share Document