scholarly journals A State-of-the-Art Review of the Sensor Location, Flow Observability, Estimation, and Prediction Problems in Traffic Networks

2015 ◽  
Vol 2015 ◽  
pp. 1-26 ◽  
Author(s):  
Enrique Castillo ◽  
Zacarías Grande ◽  
Aida Calviño ◽  
W. Y. Szeto ◽  
Hong K. Lo

A state-of-the-art review of flow observability, estimation, and prediction problems in traffic networks is performed. Since mathematical optimization provides a general framework for all of them, an integrated approach is used to perform the analysis of these problems and consider them as different optimization problems whose data, variables, constraints, and objective functions are the main elements that characterize the problems proposed by different authors. For example, counted, scanned or “a priori” data are the most common data sources; conservation laws, flow nonnegativity, link capacity, flow definition, observation, flow propagation, and specific model requirements form the most common constraints; and least squares, likelihood, possible relative error, mean absolute relative error, and so forth constitute the bases for the objective functions or metrics. The high number of possible combinations of these elements justifies the existence of a wide collection of methods for analyzing static and dynamic situations.

2015 ◽  
Vol 23 (1) ◽  
pp. 69-100 ◽  
Author(s):  
Handing Wang ◽  
Licheng Jiao ◽  
Ronghua Shang ◽  
Shan He ◽  
Fang Liu

There can be a complicated mapping relation between decision variables and objective functions in multi-objective optimization problems (MOPs). It is uncommon that decision variables influence objective functions equally. Decision variables act differently in different objective functions. Hence, often, the mapping relation is unbalanced, which causes some redundancy during the search in a decision space. In response to this scenario, we propose a novel memetic (multi-objective) optimization strategy based on dimension reduction in decision space (DRMOS). DRMOS firstly analyzes the mapping relation between decision variables and objective functions. Then, it reduces the dimension of the search space by dividing the decision space into several subspaces according to the obtained relation. Finally, it improves the population by the memetic local search strategies in these decision subspaces separately. Further, DRMOS has good portability to other multi-objective evolutionary algorithms (MOEAs); that is, it is easily compatible with existing MOEAs. In order to evaluate its performance, we embed DRMOS in several state of the art MOEAs to facilitate our experiments. The results show that DRMOS has the advantage in terms of convergence speed, diversity maintenance, and portability when solving MOPs with an unbalanced mapping relation between decision variables and objective functions.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Zhao ◽  
Han Wang ◽  
Guang-Bin Huang

Recently the state-of-the-art facial age estimation methods are almost originated from solving complicated mathematical optimization problems and thus consume huge quantities of time in the training process. To refrain from such algorithm complexity while maintaining a high estimation accuracy, we propose a multifeature extreme ordinal ranking machine (MFEORM) for facial age estimation. Experimental results clearly demonstrate that the proposed approach can sharply reduce the runtime (even up to nearly one hundred times faster) while achieving comparable or better estimation performances than the state-of-the-art approaches. The inner properties of MFEORM are further explored with more advantages.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1688
Author(s):  
Sheroze Liaquat ◽  
Muhammad Fahad Zia ◽  
Mohamed Benbouzid

Increasing power demands require multiple generating units interconnected with each other to maintain the power balance of the system. This results in a highly dense power system consisting of multiple generating units which coordinate with each other to maintain the balanced performance of the system. Among different energy sources, the thermal source, the hydro energy source, the photovoltaic system, and the wind energy source are the most popular ones. Researchers have developed several optimization problems in the literature known as dispatch problems to model the system consisting of these different types of energy sources. The constraints for each system depend upon the generation type and the nature of the objective functions involved. This paper provides a state-of-the-art review of different dispatch problems and the nature of the objective functions involved in them and highlights the major constraints associated with each optimization function.


2017 ◽  
Author(s):  
Sayan Nag

Optimization problems in design engineering are complex by nature, often because of the involvement of critical objective functions accompanied by a number of rigid constraints associated with the products involved. One such problem is Economic Load Dispatch (ED) problem which focuses on the optimization of the fuel cost while satisfying some system constraints. Classical optimization algorithms are not sufficient and also inefficient for the ED problem involving highly nonlinear, and non-convex functions both in the objective and in the constraints. This led to the development of metaheuristic optimization approaches which can solve the ED problem almost efficiently. This paper presents a novel robust plant intelligence based Adaptive Plant Propagation Algorithm (APPA) which is used to solve the classical ED problem. The application of the proposed method to the 3-generator and 6-generator systems shows the efficiency and robustness of the proposed algorithm. A comparative study with another state-of-the-art algorithm (APSO) demonstrates the quality of the solution achieved by the proposed method along with the convergence characteristics of the proposed approach.


2020 ◽  
Vol 12 (11) ◽  
pp. 185
Author(s):  
Vitor Nazário Coelho ◽  
Rodolfo Pereira Araújo ◽  
Haroldo Gambini Santos ◽  
Wang Yong Qiang ◽  
Igor Machado Coelho

Mixed-integer mathematical programming has been widely used to model and solve challenging optimization problems. One interesting feature of this technique is the ability to prove the optimality of the achieved solution, for many practical scenarios where a linear programming model can be devised. This paper explores its use to model very strong Byzantine adversaries, in the context of distributed consensus systems. In particular, we apply the proposed technique to find challenging adversarial conditions on a state-of-the-art blockchain consensus: the Neo dBFT. Neo Blockchain has been using the dBFT algorithm since its foundation, but, due to the complexity of the algorithm, it is challenging to devise definitive algebraic proofs that guarantee safety/liveness of the system (and adjust for every change proposed by the community). Core developers have to manually devise and explore possible adversarial attacks scenarios as an exhaustive task. The proposed multi-objective model is intended to assist the search of possible faulty scenario, which includes three objective functions that can be combined as a maximization problem for testing one-block finality or a minimization problem for ensuring liveness. Automated graphics help developers to visually observe attack conditions and to quickly find a solution. This paper proposes an exact adversarial model that explores current limits for practical blockchain consensus applications such as dBFT, with ideas that can also be extended to other decentralized ledger technologies.


Author(s):  
David Bergman ◽  
Merve Bodur ◽  
Carlos Cardonha ◽  
Andre A. Cire

This paper provides a novel framework for solving multiobjective discrete optimization problems with an arbitrary number of objectives. Our framework represents these problems as network models, in that enumerating the Pareto frontier amounts to solving a multicriteria shortest-path problem in an auxiliary network. We design techniques for exploiting network models in order to accelerate the identification of the Pareto frontier, most notably a number of operations to simplify the network by removing nodes and arcs while preserving the set of nondominated solutions. We show that the proposed framework yields orders-of-magnitude performance improvements over existing state-of-the-art algorithms on five problem classes containing both linear and nonlinear objective functions. Summary of Contribution: Multiobjective optimization has a long history of research with applications in several domains. Our paper provides an alternative modeling and solution approach for multiobjective discrete optimization problems by leveraging graphical structures. Specifically, we encode the decision space of a problem as a layered network and propose graph reduction operators to preserve only solutions whose image are part of the Pareto frontier. The nondominated solutions can then be extracted through shortest-path algorithms on such a network. Numerical results comparing our method with state-of-the-art approaches on several problem classes, including the knapsack, set covering, and the traveling salesperson problem (TSP), suggest orders-of-magnitude runtime speed-ups for exactly enumerating the Pareto frontier, especially when the number of objective functions grows.


Author(s):  
Pengfei (Taylor) Li ◽  
Peirong (Slade) Wang ◽  
Farzana Chowdhury ◽  
Li Zhang

Traditional formulations for transportation optimization problems mostly build complicating attributes into constraints while keeping the succinctness of objective functions. A popular solution is the Lagrangian decomposition by relaxing complicating constraints and then solving iteratively. Although this approach is effective for many problems, it generates intractability in other problems. To address this issue, this paper presents an alternative formulation for transportation optimization problems in which the complicating attributes of target problems are partially or entirely built into the objective function instead of into the constraints. Many mathematical complicating constraints in transportation problems can be efficiently modeled in dynamic network loading (DNL) models based on the demand–supply equilibrium, such as the various road or vehicle capacity constraints or “IF–THEN” type constraints. After “pre-building” complicating constraints into the objective functions, the objective function can be approximated well with customized high-fidelity DNL models. Three types of computing benefits can be achieved in the alternative formulation: ( a) the original problem will be kept the same; ( b) computing complexity of the new formulation may be significantly reduced because of the disappearance of hard constraints; ( c) efficiency loss on the objective function side can be mitigated via multiple high-performance computing techniques. Under this new framework, high-fidelity and problem-specific DNL models will be critical to maintain the attributes of original problems. Therefore, the authors’ recent efforts in enhancing the DNL’s fidelity and computing efficiency are also described in the second part of this paper. Finally, a demonstration case study is conducted to validate the new approach.


2021 ◽  
Vol 26 (2) ◽  
pp. 27
Author(s):  
Alejandro Castellanos-Alvarez ◽  
Laura Cruz-Reyes ◽  
Eduardo Fernandez ◽  
Nelson Rangel-Valdez ◽  
Claudia Gómez-Santillán ◽  
...  

Most real-world problems require the optimization of multiple objective functions simultaneously, which can conflict with each other. The environment of these problems usually involves imprecise information derived from inaccurate measurements or the variability in decision-makers’ (DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge can be present either in objective functions, restrictions, or decision-maker’s preferences. These optimization problems have been solved using various techniques such as multi-objective evolutionary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal multi-criteria classification method for preference integration to guide the algorithm to the region of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows the expression of preferences with imprecision. The experiments contrasted several versions of the proposed method with the original NSGA-III to analyze different selective pressure induced by the DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ problem. The obtained results showed a better approximation to the region of interest for a DM when its preferences are considered.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


Sign in / Sign up

Export Citation Format

Share Document