scholarly journals Polypeptide Fraction fromArca subcrenataInduces Apoptosis and G2/M Phase Arrest in HeLa Cells via ROS-Mediated MAPKs Pathways

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xianjing Hu ◽  
Zhang Zhang ◽  
Ting Liu ◽  
Liyan Song ◽  
Jianhua Zhu ◽  
...  

Arca subcrenatais documented in the literature of marine Traditional Chinese Medicine. Polypeptide fraction fromA. subcrenata, coded as P2, was demonstrated to possess significant antitumor activity in our previous study. However, the underlying mechanism remains undefined. The present study was carried out to investigate the underlying antitumor mechanism of P2 in human cervical cancer HeLa cells by MTT, FCM, LSCM, and western blot assays. The results revealed that P2 significantly induced apoptosis of HeLa cells in a concentration- and time-dependent manner. High level of ROS was provoked by P2, which was in turn responsible for induction of apoptosis through activation of intrinsic mitochondrial pathway and JNK1/2, p38 MAPK pathways, as well as inhibition of ERK1/2 pathway, as evidenced by the abrogation of P2’s effect on HeLa cells preincubated with the ROS scavenger NAC. P2 also was observed to display significant effect on G2/M phase arrest by downregulating the expression of cyclin B1/cdc2 complex and upregulating the expression of p21. These findings demonstrate that P2 induces apoptosis and G2/M phase arrest in HeLa cells through ROS-mediated MAPKs pathways, suggesting that P2 would be worth investigating as a promising agent within the scope of marine drugs for treatment of cervical cancer.

2021 ◽  
Vol 12 ◽  
Author(s):  
Guangya Xu ◽  
Xueling Yan ◽  
Zhongjia Hu ◽  
Lulu Zheng ◽  
Ke Ding ◽  
...  

Glucocappasalin (GCP), a natural product derived from the seeds of Descurainia sophia (L.) Webb. ex Prantl, exhibits potential antitumor activity in HeLa cervical carcinoma cells. In this study, we investigated the anti-cervical cancer property of GCP through the induction of cell cycle arrest, apoptosis, and autophagy in vitro and in vivo, and elucidated the underlying molecular mechanisms. We demonstrated that treatment with GCP inhibited the growth of HeLa, Siha, and Ca Ski cell lines in a dose-dependent manner, with HeLa cells displaying particular sensitivity to the GCP treatment. Subsequently, the expression of cyclin-dependent kinase 1 (CDK1) and polo like kinase 1 (PLK1) were evaluated in HeLa cells using the CDK1 kinase assay kit, the fluorescence polarization assay, real-time quantitative PCR, and western blotting. Our results demonstrate that GCP could be employed to attenuate the expression of CDK1 and PLK1 in a dose- and time-dependent manner. The complementary results obtained by flow cytometry and western blotting allowed us to postulate that GCP may exhibit its antitumor effects by inducing G2/M cell cycle arrest. Moreover, HeLa cells treated with GCP exhibited a loss in mitochondrial membrane potential, together with the activation of caspases 3 and 9, and poly ADP-ribose polymerase (PARP). Additionally, we found that GCP could increase the formation of acidic vesicular organelles (AVOs), as well as the levels of Beclin1, LC3-II, p62, and Atg5 proteins in HeLa cells. Further studies indicated that GCP triggered autophagy via the suppression of the PI3K/AKT/mTOR signaling pathways. The autophagy inhibitor 3-methyladenine (3-MA) was used to determine whether autophagy affects the apoptosis induced by GCP. Interestingly, the inhibition of autophagy attenuated apoptosis. In vivo anti-tumor experiments indicated that GCP (60 mg/kg, i.p.) markedly reduced the growth of HeLa xenografts in nude mice without apparent toxicity. Taken together, we demonstrate that GCP induces cell cycle G2/M-phase arrest, apoptosis, and autophagy by acting on the PI3K/AKT/mTOR signaling pathways in cervical carcinoma cells. Thus, GCP may represent a promising agent in the eradication of cervical cancer.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Ting-Tsz Ou ◽  
Chau-Jong Wang ◽  
Guang-Uei Hung ◽  
Cheng-Hsun Wu ◽  
Huei-Jane Lee

Shi-Liu-Wei-Liu-Qi-Yin (SLWLQY) was traditionally used to treat cancers. However, scientific evidence of the anticancer effects still remains undefined. In this study, we aimed to clarify the possible mechanisms of SLWLQY in treating cancer. We evaluated the effects of SLWLQY on apoptosis-related experiments inducing in TSGH-8301 cells by (i) 3-(4,5-dimethylthiazol-zyl)-2,5-diphenylterazolium bromide (MTT) for cytotoxicity; (ii) cell-cycle analysis and (iii) western blot analysis of the G2/M-phase and apoptosis regulatory proteins. Human bladder carcinoma TSGH-8301 cells were transplanted into BALB/c nude mice as a tumor model for evaluating the antitumor effect of SLWLQY. Treatment of SLWLQY resulted in the G2/M phase arrest and apoptotic death in a dose-dependent manner, accompanied by a decrease in cyclin-dependent kinases (cdc2) and cyclins (cyclin B1). SLWLQY stimulated increases in the protein expression of Fas and FasL, and induced the cleavage of caspase-3, caspase-9 and caspase-8. The ratio of Bax/Bcl2was increased by SLWLQY treatment. SLWLQY markedly reduced tumor size in TSGH-8301 cells-xenografted tumor tissues. In the tissue specimen, SLWLQY up-regulated the expression of Fas, FasL and Bax proteins, and down-regulated Bcl2as well as inin vitroassay. Our results showed that SLWLQY reduced tumor growth, caused cell-cycle arrest and apoptosis in TSGH-8301 cells via the Fas and mitochondrial pathway.


2003 ◽  
Vol 71 (5) ◽  
pp. 2724-2735 ◽  
Author(s):  
Jun Fujii ◽  
Takashi Matsui ◽  
Daniel P. Heatherly ◽  
Kailo H. Schlegel ◽  
Peter I. Lobo ◽  
...  

ABSTRACT Apoptosis was induced rapidly in HeLa cells after exposure to bacterial Shiga toxin (Stx1 and Stx2; 10 ng/ml). Approximately 60% of HeLa cells became apoptotic within 4 h as detected by DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and electron microscopy. Stx1-induced apoptosis required enzymatic activity of the Stx1A subunit, and apoptosis was not induced by the Stx2B subunit alone or by the anti-globotriaosylceramide antibody. This activity was also inhibited by brefeldin A, indicating the need for toxin processing through the Golgi apparatus. The intracellular pathway leading to apoptosis was further defined. Exposure of HeLa cells to Stx1 activated caspases 3, 6, 8, and 9, as measured both by an enzymatic assay with synthetic substrates and by detection of proteolytically activated forms of these caspases by Western immunoblotting. Preincubation of HeLa cells with substrate inhibitors of caspases 3, 6, and 8 protected the cells against Stx1-dependent apoptosis. These results led to a more detailed examination of the mitochondrial pathway of apoptosis. Apoptosis induced by Stx1 was accompanied by damage to mitochondrial membranes, measured as a reduced mitochondrial membrane potential, and increased release of cytochrome c from mitochondria at 3 to 4 h. Bid, an endogenous protein known to permeabilize mitochondrial membranes, was activated in a Stx1-dependent manner. Caspase-8 is known to activate Bid, and a specific inhibitor of caspase-8 prevented the mitochondrial damage. Although these data suggested that caspase-8-mediated cleavage of Bid with release of cytochrome c from mitochondria and activation of caspase-9 were responsible for the apoptosis, preincubation of HeLa cells with a specific inhibitor of caspase-9 did not protect against apoptosis. These results were explained by the discovery of a simultaneous Stx1-dependent increase in endogenous XIAP, a direct inhibitor of caspase-9. We conclude that the primary pathway of Stx1-induced apoptosis and DNA fragmentation in HeLa cells is unique and includes caspases 8, 6, and 3 but is independent of events in the mitochondrial pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Juanli Wang ◽  
Hong Wu ◽  
Guiting Song ◽  
Donglin Yang ◽  
Jiuhong Huang ◽  
...  

Background. Cancer remains a major clinical challenge because of the lack of effective drug for its treatment. To find out novel cancer chemotherapeutic molecules, we explored the anticancer effect of novel imidazopyridine compound 9i and also investigated the underlying molecular mechanism. Methods. Human cervical cancer cell (HeLa) viability was measured by an MTT assay after treatment with compound 9i. Clonogenicity of HeLa cells was investigated by an in vitro colony formation assay. Cell death was visualized by propidium iodide (PI) staining. Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and mitochondrial membrane potential in HeLa cells. The expression level of apoptosis-related proteins was also determined by western blot. Results. Compound 9i suppressed HeLa cell viability in a time- and dose-dependent manner. Compound 9i induced mitochondrial outer membrane permeabilization (MOMP), activated caspase cascade, and finally resulted in apoptosis. Conclusion. Compound 9i induces mitochondrial pathway-mediated apoptosis in human cervical cancer cells, suggesting that 9i could be a potential lead compound to be developed as a cancer therapeutic molecule.


2011 ◽  
Vol 39 (04) ◽  
pp. 817-825 ◽  
Author(s):  
Ya-Jun Lin ◽  
Yong-Zhan Zhen ◽  
Yu-Fang Zhao ◽  
Jie Wei ◽  
Gang Hu

Rhein lysinate (RHL), easily dissolved in water, is one of the anthraquinones, and has been shown to have anti-tumor activity in different human cancer cell lines. In the present study, we observed that RHL could cause vacuolar degeneration in HeLa cells, which was not observed in human umbilical vein endothelial cells (HUVECs) and other cell lines (SKOV-3 and SK-BR-3). Therefore, the purpose of this study was to investigate the anti-tumor effect of rhein lysinate on human cervix cancer HeLa cells. The results indicated that RHL could induce HeLa cell S-phase arrest and RHL (higher than 80 μM) also induced HeLa cell G2/M-phase arrest in a dose-dependent manner. Compared to the HeLa cells, RHL induced HUVECs G1-phase arrest at all dose levels tested in a dose-dependent manner. Treatment with RHL led to a significant S or G2/M-phase arrest through promoting the expression of p53 and p21 and the phosphorylation of p53. Moreover, 80 μM RHL could increase 5-FU anti-tumor activity. In conclusion, RHL could be a novel chemotherapeutic drug candidate for the treatment of human cervix cancer in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2014 ◽  
Vol 86 ◽  
pp. 219-227 ◽  
Author(s):  
Wei-Ting Liu ◽  
Ching Chen ◽  
I-Chen Lu ◽  
Sheng-Chu Kuo ◽  
Kuo-Hsiung Lee ◽  
...  

Author(s):  
Xiaoling Wu ◽  
Zhiqin Yang ◽  
Huimin Dang ◽  
Huixia Peng ◽  
Zhijun Dai

Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to possess multiple pharmacological activities, such as anticancer and anti-inflammatory properties. This study investigated the effect of baicalein in cervical cancer cells. Cell growth curve and MTT assay were performed and revealed that baicalein inhibited the proliferation of SiHa and HeLa cells in a dose-dependent manner. We further found that baicalein arrested the cell cycle of SiHa and HeLa cells at the G0/G1 phase by suppressing the expression of cyclin D1 through the downregulation of phosphorylated protein kinase B (p-AKT) and phosphorylated glycogen synthase kinase 3β (p-GSK3β) according to FACS assays and Western blotting. Moreover, when CHIR-99021, a GSK3β inhibitor, was added to baicalein-treated SiHa cells, the expression of cyclin D1 was recovered, and cell proliferation was promoted. In conclusion, these data indicated that baicalein suspended the cell cycle at the G0/G1 phase via the downregulation of cyclin D1 through the AKT‐GSK3β signaling pathway and further inhibited the proliferation of SiHa and HeLa cervical cancer cells.


2016 ◽  
Vol 11 (4) ◽  
pp. 838 ◽  
Author(s):  
Ning Xia

<p class="Abstract">The present study was aimed at to demonstrate the antitumor effects of syringin in HeLa human cervical cancer cells. Its effects on apoptosis, cell cycle phase distribution as well as on cell migration were also examined. The effect on cell proliferation was evaluated by MTT assay, while as effects on colony formation were assessed using clonogenic assay. Syringin inhibited cancer cell growth in HeLa cells in a time-dependent as well as in a concentration-dependent manner. Syringin also led to inhibition of colony formation efficacy with complete suppression at 100 µM drug dose. Syringin could induce G2/M cell cycle arrest along with slight sub-G1 cell cycle arrest. HeLa cells began to emit red fluorescence as the dose of syringin increased from 0 µM in vehicle control to 100 µM. Syringin also inhibited cell migration in a dose-dependent manner with 100 µM dose of syringin leading to 100% inhibition of cell migration.</p><p> </p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Urszula K. Komarnicka ◽  
Barbara Pucelik ◽  
Daria Wojtala ◽  
Monika K. Lesiów ◽  
Grażyna Stochel ◽  
...  

Abstract[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex—is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.


Sign in / Sign up

Export Citation Format

Share Document