scholarly journals Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Urszula K. Komarnicka ◽  
Barbara Pucelik ◽  
Daria Wojtala ◽  
Monika K. Lesiów ◽  
Grażyna Stochel ◽  
...  

Abstract[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex—is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.

2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Chuangyu Wen ◽  
Huihui Wang ◽  
Xiaobin Wu ◽  
Lu He ◽  
Qian Zhou ◽  
...  

Abstract Novel drugs are urgently needed for gastric cancer (GC) treatment. The thioredoxin-thioredoxin reductase (TRX-TRXR) system has been found to play a critical role in GC tumorigenesis and progression. Thus, agents that target the TRX-TRXR system may be highly efficacious as GC treatments. In this study, we showed that chaetocin, a natural product isolated from the Chaetomium species of fungi, inhibited proliferation, induced G2/M phase arrest and caspase-dependent apoptosis in both in vitro and in vivo models (cell xenografts and patient-derived xenografts) of GC. Chaetocin inactivated TRXR-1, resulting in the accumulation of reactive oxygen species (ROS) in GC cells; overexpression of TRX-1 as well as cotreatment of GC cells with the ROS scavenger N-acetyl-L-cysteine attenuated chaetocin-induced apoptosis; chaetocin-induced apoptosis was significantly increased when GC cells were cotreated with auranofin. Moreover, chaetocin was shown to inactivate the PI3K/AKT pathway by inducing ROS generation; AKT-1 overexpression also attenuated chaetocin-induced apoptosis. Taken together, these results reveal that chaetocin induces the excessive accumulation of ROS via inhibition of TRXR-1. This is followed by PI3K/AKT pathway inactivation, which ultimately inhibits proliferation and induces caspase-dependent apoptosis in GC cells. Chaetocin therefore may be a potential agent for GC treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wenjing Wang ◽  
Maomin Lv ◽  
Chaoji Huangfu ◽  
Fang Wang ◽  
Jingang Zhang

Purpose. Radiotherapy is an effective treatment modality in the clinical treatment of breast cancer. The present work investigated the effect of 3,3′-diindolylmethane (DIM) onγ-irradiation sensitizing human breast carcinoma.Methods. Cell survival, intracellular ROS levels, cell cycle distribution, cell apoptosis, and expression of proteins related to apoptosis were measured with MTT assays, flow cytometry, and Western blot analysis, respectively.Results.In vitroDIM plusγ-irradiation arrested the activity of G2/M phase cell cycle, increased intracellular ROS level, significantly suppressed PARP (poly ADP-ribose polymerase), and enhancedγ-irradiation-induced apoptosis, thereby inhibiting the proliferation of MCF-7 cells.Conclusion. These data provide a rationale for the use of DIM as a promising sensitizer ofγ-irradiation.


2013 ◽  
Vol 91 (12) ◽  
pp. 1016-1024 ◽  
Author(s):  
Jia Li ◽  
Siran Wang ◽  
Jimei Yin ◽  
Linna Pan

Geraniin has previously been reported to possess extensive biological activity. In this study, we reported that geraniin is an inhibitor of tumor activity in vitro and in vivo. Geraniin suppressed the proliferation of A549 cells in a dose- and time-dependent manner. Geraniin arrested the cell cycle in the S phase and induced a significant accumulation of reactive oxygen species (ROS), as well as an increased percentage of cells with mitochondrial membrane potential (MMP) disruption. Western blot analysis showed that geraniin inhibited Bcl-2 expression and induced Bax expression to disintegrate the outer mitochondrial membrane and cause cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascades. Additionally, geraniin resulted in tumor growth inhibition in A549 xenografts. Our results indicate cytotoxic activity of geraniin towards cancer cells in vitro and in vivo.


2021 ◽  
Author(s):  
qianqian chen ◽  
Yaqin Hou ◽  
Bingjie Hao ◽  
Zhou Ding ◽  
Qing Xia ◽  
...  

Abstract BackgroundNon-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Berberine (BBR), as an isoquinoline alkaloid, is commonly utilized in traditional Chinese medicine. Previous studies have proven that BBR possesses potential anti-tumor effect. However, the mechanism of on mitochondrial function in anti-NSCLC are still unknown.MethodsCell Counting Kit-8 (CCK-8), flow cytometry and western blotting were utilized to characterize the roles and relationships among BBR, ROS, ASK1, JNK, coxIV,caspase-3, cytochrome c ,bcl-2 and bax in NSCLC. Immunohistochemical (IHC) analysis was built to examine their expression in vivo.ResultsIn this study, we found that BBR potently suppressed NSCLC cells (A549 and PC9) growth by inducing apoptosis in a dose- and time-dependent manner. BBR induced apoptosis in NSCLC as evidenced by caspase-3 cleavage, cytochrome c release, and mitochondrial membrane depolarization. Furthermore, BBR induced ROS generation and ASK1 and JNK activation. To explore whether such apoptosis was linked to ROS production and ASK1 and JNK activation, we treated cells with a JNK inhibitor (SP600125), which significantly suppressed BBR-induced apoptosis. We further found that treating these cells with the anti-oxidant N-acetyl cysteine (NAC) was sufficient to both suppress ASK1 and JNK activation and to disrupt apoptotic induction.ConclusionsTogether, these data suggest that BBR induces NSCLC cells apoptosis via ROS-mediated ASK1/JNK and mitochondrial pathway activation.


2018 ◽  
Vol 8 (4) ◽  
pp. 627-635 ◽  
Author(s):  
Fatemeh Akbarzadeh ◽  
Karim Khoshgard ◽  
Leila Hosseinzadeh ◽  
Elham Arkan ◽  
Davood Rezazadeh

Purpose: Lately, bismuth-based nanomaterials have been widely utilized in medical researches such as imaging, drug delivery and radio-sensitization. Despite their advantages, bismuth-based compounds have shown toxic effects in humans. There are few studies on cytotoxicity effects of bismuth oxide (Bi2O3) nanoparticles (NPs) in-vitro. In this study, we aimed to investigate cytotoxicity of bare and also folate and 5-aminolevulinic acid (5-ALA)-conjugated Bi2O3 NPs on nasopharyngeal carcinoma (KB) and lung cancer (A549) cell lines. Methods: Bi2O3 NPs were synthesized and conjugated with folate and 5-ALA. KB and A549 cells were cultured and incubated with 10, 20, 50 and 100 μg/ml concentrations of bare and folate-5-ALA-conjugated NPs. The survival rates were obtained after 2 and 24 hours incubation of the cells with NPs using MTT assay. Also, apoptosis and ROS generation induced by the NPs in the treated cells were obtained using Caspases-3 activity assay and flow cytometry analysis, respectively. Results: Bi2O3 NPs were successfully synthesized with average size of 19.2 ± 6.5 nm, then conjugated with 5-ALA and folate. Either naked or folate-conjugated NPs were easily taken up by the cells in a concentration-dependent manner and showed cytotoxic effects. The significant cell death was noted at the concentrations more than 50 μg/ml for both compounds. Conclusion: Results indicated low cytotoxicity of the prepared NPs at lower incubation periods, which is very important for their further applications. However, 24 hours incubation of the cells with both forms of NPs caused more cell killing and the cytotoxicity increased with increasing concentrations of the NPs.


2021 ◽  
Author(s):  
Wei-Jing Gong ◽  
Tao Zhou ◽  
Jia-Qiang Xu ◽  
Yi-Fei Huang ◽  
Li-Ping Xiang ◽  
...  

Abstract Lung cancer is the most commonly diagnosed cancer with a high mortality rate. Cisplatin is one of the most important chemotherapeutic agents for the treatment of lung cancer patients, especially in advanced stages. Recent studies showed that cisplatin may interact with mitochondria which may partly account for its cytotoxicity. In the study, we explored the effect of resistin on cisplatin-induced cytotoxicity in A549 cells and assessed whether mitochondria-dependent apoptosis was involved. Our results found that 25 ng/ml resistin could significantly increase cisplatin-induced apoptosis and G2/M phase arrest, enhance reactive oxygen species generation, exacerbate the collapse of mitochondrial membrane potential, promote the distribution of cytochrome C in the cytoplasm from mitochondria, and activate caspase 3. Therefore, the results suggested that resistin might increase cisplatin-induced cytotoxicity via a mitochondria-mediated pathway in A549 cells. However, the precise mechanism has yet to be explored in the future.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Gang Wang ◽  
Yanan Wang ◽  
Qinzhi Yang ◽  
Chunrong Xu ◽  
Youkun Zheng ◽  
...  

AbstractMethylglyoxal (MGO) is an active metabolite of glucose and plays a prominent role in the pathogenesis of diabetic vascular complications, including endothelial cell apoptosis induced by oxidative stress. Metformin (MET), a widely prescribed antidiabetic agent, appears to reduce excessive reactive oxygen species (ROS) generation and limit cell apoptosis. However, the molecular mechanisms underlying this process are still not fully elucidated. We reported here that MET prevents MGO-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Protein expression and protein phosphorylation were investigated using western blotting, ELISA, and immunohistochemical staining, respectively. Cell viability and apoptosis were assessed by the MTT assay, TUNEL staining, and Annexin V-FITC and propidium iodide double staining. ROS generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Our results revealed that MET prevented MGO-induced HUVEC apoptosis, inhibited apoptosis-associated biochemical changes such as loss of MMP, the elevation of the Bax/Bcl-2 ratio, and activation of cleaved caspase-3, and attenuated MGO-induced mitochondrial morphological alterations in a dose-dependent manner. MET pretreatment also significantly suppressed MGO-stimulated ROS production, increased signaling through the ROS-mediated PI3K/Akt and Nrf2/HO-1 pathways, and markedly elevated the levels of its downstream antioxidants. Finally, similar results were obtained in vivo, and we demonstrated that MET prevented MGO-induced oxidative damage, apoptosis, and inflammation. As expected, MET reversed MGO-induced downregulation of Nrf2 and p-Akt. In addition, a PI3K inhibitor (LY-294002) and a Nrf2 inhibitor (ML385) observably attenuated the protective effects of MET on MGO-induced apoptosis and ROS generation by inhibiting the Nrf2/HO-1 pathways, while a ROS scavenger (NAC) and a permeability transition pores inhibitor (CsA) completely reversed these effects. Collectively, these findings broaden our understanding of the mechanism by which MET regulates apoptosis induced by MGO under oxidative stress conditions, with important implications regarding the potential application of MET for the treatment of diabetic vascular complications.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document