scholarly journals Ankylosing Spondylitis and Posture Control: The Role of Visual Input

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandro Marco De Nunzio ◽  
Salvatore Iervolino ◽  
Carmela Zincarelli ◽  
Luisa Di Gioia ◽  
Giuseppe Rengo ◽  
...  

Objectives. To assess the motor control during quiet stance in patients with established ankylosing spondylitis (AS) and to evaluate the effect of visual input on the maintenance of a quiet posture.Methods. 12 male AS patients (mean age 50.1 ± 13.2 years) and 12 matched healthy subjects performed 2 sessions of 3 trials in quiet stance, with eyes open (EO) and with eyes closed (EC) on a baropodometric platform. The oscillation of the centre of feet pressure (CoP) was acquired. Indices of stability and balance control were assessed by the sway path (SP) of the CoP, the frequency bandwidth (FB1) that includes the 80% of the area under the amplitude spectrum, the mean amplitude of the peaks (MP) of the sway density curve (SDC), and the mean distance (MD) between 2 peaks of the SDC.Results. In severe AS patients, the MD between two peaks of the SDC and the SP of the center of feet pressure were significantly higher than controls during both EO and EC conditions. The MP was significantly reduced just on EC.Conclusions. Ankylosing spondylitis exerts negative effect on postural stability, not compensable by visual inputs. Our findings may be useful in the rehabilitative management of the increased risk of falling in AS.

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Aleksandra Truszczyńska ◽  
Agnieszka Jarmuziewicz ◽  
Justyna Drzał-Grabiec

Summary Study aim: the aim of the study was to compare the postural stability and ability to control balance in active women who attend fitness classes versus inactive women. Material and methods: the study included 41 women who exercise regularly (mean age 28.64±5.26 years). The control group consisted of 42 women not engaged in regular physical activity (mean age 28.55±5.05 years). In each subject, postural stability testing was performed using the Stabilometric Platform CQStab2P (the 2-platform version). Authors analysed the mean, median and standard deviation for each parameter of the stabilogram and statokinesiogram. Results: for most of the studied parameters, the statistical analysis showed a positive effect of exercising on the level of fitness compared to the control group, for both the test with eyes open and the test with eyes closed. Conclusions: attending fitness classes significantly affects postural stability and balance control in young women, and leads to lesser dependence on sight to maintain it.


Author(s):  
Gérome C. Gauchard ◽  
Alexis Lion ◽  
Loïc Bento ◽  
Philippe P. Perrin ◽  
Hadrien Ceyte

Postural performance may vary according to the constraints related to the practice of different martial arts. This study aimed to investigate the visual and tactile contribution in balance control: (i) between karatekas and sedentary controls; (ii) between kata and kumite specialists within the elite karatekas. Balance control in quiet stance of 23 high-level karatekas (11 kata and 12 kumite specialists) and of 24 sedentary controls was evaluated in four sensory context conditions, a combination of visual cue availability (eyes open or closed) and tactile support reliability (firm or foam surface). The results showed that karatekas had a reduced body sway and a smaller sway area compared to controls, especially in the more challenging condition, i.e. eyes closed on a foam surface. Moreover, kata karatekas tended to have a reduced body sway and a smaller sway area than kumite karatekas in all sensory conditions. The practice of karate may enhance balance control in quiet stance by optimizing the role of tactile cues and by decreasing the weighting of visual cues. Moreover, the specialization into different karateka practices may induce the implementation of specific postural strategies to solve a given balance problem.


2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
Margarida Ferreira ◽  
Cristina Mesquita ◽  
Paula Santos ◽  
João Borges ◽  
Maria Graça ◽  
...  

Abstract Background Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease that leads to a limitation of mobility, which can cause postural deficits and progressive loss of balance. Aquatic exercise improves this health condition. The objetive is to verify the influence of an aquatic exercise program, on balance and functionality, in individuals with AS. Methods Pre-experimental study carried out on 6 individuals with AS. All individuals were assessed at baseline (M0) and 12 weeks after the intervention (M1) using the Bath indices (BASMI, BASFI and BASDAI) and the balance assessment protocol (‘Body Sway’) by the Physiosensing Platform. Data were analyzed using the Statistical Program Statistical Package for the Social Sciences (SPSS), version 26. Were used descriptive statistics and Wilcoxon test to compare M0 and M1. The significance value was 0.05. Results We verify improvements in BASMI (P = 0.046), BASFI (P = 0.042) and BASDAI (P = 0.027) scores. Through the analysis of the center of pressure variables, there were no statistically significant differences, between moments, in the protocol. However, when assessing balance, in the anteroposterior mean distance in both the protocol (eyes open) and in the protocol (eyes closed), in the root mean square in both protocols and in mediolateral mean velocity, only in the protocol (eyes open), there was a slight decrease in the median value. Conclusions The present study suggests that the specific aquatic exercise program, may influence balance and improve functionality in a population with AS. Therefore, the Bath indices translate improvements in the symptoms and functionalities of these participants.


Author(s):  
Vedrana Sember ◽  
Janja Grošelj ◽  
Maja Pajek

Balance is an essential prerequisite for the normal physical development of a child. It consists of the ability to maintain the body’s centre of mass over its base of support, which is enabled by automatic postural adjustments, and maintain posture and stability in various conditions and activities. The present study aimed to determine the measurement characteristics (reliability and concurrent validity) and the relative ability of balance tests and different motor tests in healthy 11-year-olds. We also evaluated the impact of vision on balance ability. Our results showed high interrater reliability (from 0.810 to 0.910) and confirmed the construct validity of the included balance tests. Girls performed significantly better than boys in laboratory tandem stance in following balance components: total sway path with eyes open (BSEO) (t = 2.68, p = 0.01, effect size (ES) = 0.81), total body sway with eyes closed of centre of pressure (CoP) displacement in the a-p direction (BSEC) (t = 1.86, p = 0.07, ES = 0.57), mean velocity of CoP displacements (VEO) (t = 2.67, p = 0.01, ES = 0.83), mean amplitude of CoP displacements in the a-p direction (AapEO) (t = 3.38. p = 0.00, ES = 1.01) and in mean amplitude of CoP displacements in the m-l direction (AmlEO) (t = 3.68, p = 0.00, ES = 1.19). With eyes closed, girls performed significantly better (t = 2.28, p = 0.03, ES = 0.70) than boys did in the mean amplitude of COP displacements in the a-p direction (AapEO) and significantly better (t = 2.37, p = 0.03, ES = 0.71) in the mean amplitude of COP displacements in the m-l direction (AmlEC). Insignificant correlations between different balance tests, except for a correlation between the flamingo test and one-leg stance on a low beam (r = 0.558, p < 0.01), show that each test assesses different aspects of balance ability; therefore, balance cannot be assessed with a single test.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Hossein Talebi ◽  
Mohammad Taghi Karimi ◽  
Seyed Hamid Reza Abtahi ◽  
Niloofar Fereshtenejad

Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments.Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50±7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed.Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (pvalue > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (pvalue < 0.05).Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.


2021 ◽  
Vol 3 ◽  
Author(s):  
Maria-Elissavet Nikolaidou ◽  
Vasilios Karfis ◽  
Maria Koutsouba ◽  
Arno Schroll ◽  
Adamantios Arampatzis

Dance has been suggested to be an advantageous exercise modality for improving postural balance performance and reducing the risk of falls in the older population. The main purpose of this study was to investigate whether visual restriction impacts older dancers and non-dancers differently during a quiet stance balance performance test. We hypothesized higher balance performance and greater balance deterioration due to visual restriction in dancers compared with non-dancers, indicating the superior contribution of the visual channel in the expected higher balance performances of dancers. Sixty-nine (38 men, 31 women, 74 ± 6 years) healthy older adults participated and were grouped into a Greek traditional dance group (n = 31, two to three times/week for 1.5 h/session, minimum of 3 years) and a non-dancer control group (n = 38, no systematic exercise history). The participants completed an assessment of one-legged quiet stance trials using both left and right legs and with eyes open while standing barefoot on a force plate (Wii, A/D converter, 1,000 Hz; Biovision) and two-legged trials with both eyes open and closed. The possible differences in the anthropometric and one-legged balance parameters were examined by a univariate ANOVA with group and sex as fixed factors. This ANOVA was performed using the same fixed factors and vision as the repeated measures factor for the two-legged balance parameters. In the one-legged task, the dance group showed significantly lower values in anteroposterior and mediolateral sway amplitudes (p = 0.001 and p = 0.035) and path length measured in both directions (p = 0.001) compared with the non-dancers. In the two-legged stance, we found a significant vision effect on path length (p &lt; 0.001) and anteroposterior amplitude (p &lt; 0.001), whereas mediolateral amplitude did not differ significantly (p = 0.439) between closed and open eyes. The dance group had a significantly lower CoP path length (p = 0.006) and anteroposterior (p = 0.001) and mediolateral sway amplitudes (p = 0.003) both in the eyes-open and eyes-closed trials compared with the control group. The superior balance performance in the two postural tasks found in the dancers is possibly the result of the coordinated, aesthetically oriented intersegmental movements, including alternations between one- and two-legged stance phases, that comes with dance. Visual restriction resulted in a similar deterioration of balance performance in both groups, thus suggesting that the contribution of the visual channel alone cannot explain the superior balance performance of dancers.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7513 ◽  
Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Background It is known that adolescent idiopathic scoliosis (AIS) is often accompanied by balance deficits. This reciprocal relationship must be taken into account when prescribing new therapeutic modalities because these may differently affect postural control, interacting with therapy and influencing its results. Objective The purpose was to compare postural control in girls with AIS while wearing the Chêneau brace (BRA) or performing active self-correction (ASC) with their postural control in a quiet comfortable stance. Methods Nine subjects were evaluated on a force plate in three series of two 20-s quiet standing trials with eyes open or closed; three blocks were randomly arranged: normal quiet stance (QST), quiet stance with BRA, and quiet stance with ASC. On the basis of centre-of-pressure (COP) recordings, the spatial and temporal COP parameters were computed. Results and Discussion Performing ASC was associated with a significant backward excursion of the COP mean position with eyes open and closed (ES = 0.56 and 0.65, respectively; p < 0.05). This excursion was accompanied by an increase in the COP fractal dimension (ES = 1.05 and 0.98; p < 0.05) and frequency (ES = 0.78; p = 0.10 and ES = 1.14; p < 0.05) in the mediolateral (ML) plane. Finally, both therapeutic modalities decreased COP sample entropy with eyes closed in the anteroposterior (AP) plane. Wearing BRA resulted in ES = 1.45 (p < 0.05) while performing ASC in ES = 0.76 (p = 0.13). Conclusion The observed changes in the fractal dimension (complexity) and frequency caused by ASC account for better adaptability of patients to environmental demands and for their adequate resources of available postural strategies in the ML plane. These changes in sway structure were accompanied by a significant (around 25 mm) backward excursion of the mean COP position. However, this improvement was achieved at the cost of lower automaticity, i.e. higher attentional involvement in postural control in the AP plane. Wearing BRA may have an undesirable effect on some aspects of body balance.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zoe A. Bamber ◽  
Wei Sun ◽  
Rhea S. Menon ◽  
Patrick C. Wheeler ◽  
Ian D. Swain ◽  
...  

Balance improvement could contribute to ankle stability for the prevention of ankle sprains. Functional electrical stimulation (FES) is an effective way of augmenting muscle activity and improving balance. This study investigated the effect of FES of peroneal muscles on single-and double-leg balance. Fifteen healthy females (age=23.1±1.6 years, height=1.63±0.07 m, and weight=63.7±9.9 kg) performed single- and double-leg standing balance tests with eyes open and closed before and after 15-minute FES intervention during treadmill running at a comfortable, self-selected pace. FES of peroneal muscles was provided bilaterally, using an Odstock Dropped Foot Stimulator. The total excursion of the centre of pressure (COP) was calculated to assess the standing balance control ability. The total excursion of COP in single- and double-leg stance with eyes open reduced significantly after FES intervention by 14.7% (p<0.001) and 5.9% (p=0.031), respectively. The eyes-closed condition exhibited a 12.7% (p=0.002) reduction in single-leg stance but did not significantly change in double-leg stance (p>0.05). Limb preference did not account for balance postintervention. No significant difference in total excursion of COP was found between preferred and less preferred limbs with both visual conditions (p>0.05). FES of peroneal muscles improved standing balance control with eyes open in double-leg and single-leg stance and with eyes closed in double-leg stance. The improvements in balance control with FES treatment did not vary concerning limb preference.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11221
Author(s):  
Daniel Schmidt ◽  
Felipe P. Carpes ◽  
Thomas L. Milani ◽  
Andresa M.C. Germano

Background Studies demonstrated that the older adults can be more susceptible to balance instability after acute visual manipulation. There are different manipulation approaches used to investigate the importance of visual inputs on balance, e.g., eyes closed and blackout glasses. However, there is evidence that eyes open versus eyes closed results in a different organization of human brain functional networks. It is, however, unclear how different visual manipulations affect balance, and whether such effects differ between young and elderly persons. Therefore, this study aimed to determine whether different visual manipulation approaches affect quasi-static and dynamic balance responses differently, and to investigate whether balance responses of young and older adults are affected differently by these various visual conditions. Methods Thirty-six healthy participants (20 young and 16 older adults) performed balance tests (quasi-static and unexpected perturbations) under four visual conditions: Eyes Open, Eyes Closed, Blackout Glasses, and Dark Room. Center of pressure (CoP) and muscle activation (EMG) were quantified. Results As expected, visual deprivation resulted in larger CoP excursions and higher muscle activations during balance tests for all participants. Surprisingly, the visual manipulation approach did not influence balance control in either group. Furthermore, quasi-static and dynamic balance control did not differ between young or older adults. The visual system plays an important role in balance control, however, similarly for both young and older adults. Different visual deprivation approaches did not influence balance results, meaning our results are comparable between participants of different ages. Further studies should investigate whether a critical illumination level may elicit different postural responses between young and older adults.


2018 ◽  
Vol 39 (08) ◽  
pp. 625-629 ◽  
Author(s):  
Yong Kwon

AbstractTo identify the single leg balance (SLB) test that discriminates among healthy, coper, and chronic ankle instability (CAI) groups and to determine effects of ankle muscles on the balance error scoring system (BESS) among the three populations. 60 subjects (20 per group) performed the SLB test with eyes open (EO) and eyes closed (EC). Normalized mean amplitude (NMA) of the tibia anterior (TA), fibularis longus (FL), and medial gastrocnemius (MG) muscles and BESS were measured while performing the SLB test. The coper group had a lower error score than the CAI group in the EC. NMA was greater in the CAI group compared to in the healthy and coper groups regardless of muscle type. NMA of the TA was less than the PL and MG regardless of the group in the EO. The CAI group demonstrated greater NMAs of the PL and MG than the healthy and coper groups in the EC. The CAI group demonstrated greater NMA of the PL and MG by compensating their ankle muscles in the EO and EC. BESS suggests that the coper group may have coping mechanisms to stabilize static postural control compared to the CAI group. The EC may be better to detect static postural instability in the CAI or coper group.


Sign in / Sign up

Export Citation Format

Share Document