scholarly journals Phase Errors Simulation Analysis for GNSS Antenna in Multipath Environment

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lixun Li ◽  
Baiyu Li ◽  
Huaming Chen ◽  
Feixue Wang

High-precision GNSS application requires the exact phase center calibration of antenna. Various methods are published to determine the locations of the phase center. In the outfield, when the phase errors that arose by multipath exceed the phase center variations (PCV) tolerance, the calibration values may be not useful. The objective of this paper is thus to evaluate the phase errors that arose by multipath signals. An improved model of antenna receiving signal is presented. The model consists of three main components: (1) an antenna model created by combination of right hand circular polarization (RHCP) and left hand circular polarization (LHCP), (2) a multipath signals model including amplitude, phase, and polarization, and (3) a ground reflection model applying to circular polarization signals. Based on the model, two kinds of novel up-to-down(U/D)ratios are presented. The performance of the model is assessed against the impact of up-to-down ratio of antenna on phase errors.

2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


Author(s):  
R.R. Barton ◽  
L.W. Schruben ◽  
J.C. Ford ◽  
D. Hopkins ◽  
D. Goldsman ◽  
...  

2014 ◽  
Vol 915-916 ◽  
pp. 459-463
Author(s):  
He Quan Zhang

In order to deal with the impact on traffic flow of the rule, we compare the influence factors of traffic flow (passing, etc.) into viscous resistance of fluid mechanics, and establish a traffic model based on fluid mechanics. First, in heavy and light traffic, we respectively use this model to simulate the actual segment of the road and find that when the traffic is heavy, the rule hinder the further increase in traffic. For this reason, we make further improvements to the model to obtain a fluid traffic model based on no passing and find that the improved model makes traffic flow increase significantly. Then, the improved model is applied to the light traffic, we find there are no significant changes in traffic flow .In this regard we propose a new rule: when the traffic is light, passing is allowed, but when the traffic is heavy, passing is not allowed.


2013 ◽  
Vol 805-806 ◽  
pp. 334-337
Author(s):  
Shi Wei Su ◽  
You Wei Zhou ◽  
Wei Xiong

Analysis compares the direct access to a single set of wind power systemTwo groups of wind farm access system directlyMultiple sets of wind farm access system directly And Multiple sets of wind dispersion access system's impact on power system transient stability. And compare the simulation results, Concluded that wind farm access capacity and its topology structure's influence on system transient stability.


2021 ◽  
pp. 94-103
Author(s):  
Jiangtao Du ◽  
Steve Sharples

The deposition of air pollutants on glazing can significantly affect the daylight transmittance of building fenestration systems in urban areas. This study presents a simulation analysis of the impact of air pollution and glazing visual transmittance on indoor daylight availability in an open-plan office in London. First, the direct links between glazing visual transmittance and daylighting conditions were developed and assessed. Second, several simple algorithms were established to estimate the loss of daylight availability due to the pollutant deposition at the external surface of vertical glazing. Finally, some conclusions and design strategies to support facade planning at the early design stage of an urban building project were developed.


2014 ◽  
Vol 501-504 ◽  
pp. 578-582
Author(s):  
Liang Hsu ◽  
Ming Long Hu ◽  
Jun Zhi Zhang

Considering secondary load, simulate the axial compression process of reinforced concrete square columns strengthened with igneous rock fiber reinforced polymer with Abaqus. Make a comparison between the simulation result and experimental result. The finite-element model can simulate the experiment preferably. And the impact of lagged strain is very obvious.


2012 ◽  
Vol 182-183 ◽  
pp. 283-287
Author(s):  
Qun Biao Wu ◽  
Pei Hui Shen ◽  
Rong Zhong Liu

In penetration mechanics, the material parameters of the rod penetrator are very important factors which influence the effect of penetration. The effect of each parameter changes with the impact velocity. Simulation analysis of two models filled with tungsten alloy and tungsten carbide separately penetrating semi-infinite armor steel target at medium to high velocities has been made to quantitatively analyze the key roles that the density and hardness play. Simulation results indicate that a dividing line of velocity exists between the penetrations of two materials. Above the line, tungsten alloy rod with greater density has a distinct advantage with increasing velocity. Below the line, the advantage of tungsten carbide rod with greater hardness is significantly more with the decreasing velocity. In the process of penetration, penetration velocity decreases rapidly from a high value to zero. The simulation result provides quantitative analytic basis which can be used to prove that the penetrator composed of two different materials is better than the one composed of homogenous material.


Sign in / Sign up

Export Citation Format

Share Document