scholarly journals Active Vibration Control of an Axially Translating Robot Arm with Rotating-Prismatic Joint Using Self-Sensing Actuator

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Liang Zhao ◽  
Zhen-Dong Hu

Active vibration control of an axially translating robot arm with rotating-prismatic joint using self-sensing actuator is investigated. The equations of the system are derived by Lagrange’s equation with the assumed mode method. The displacement and velocity control law is used to configure the self-sensing actuator, which provides the active damping and stiffness effect to the structure. The numerical simulations reveal that the tip deflection of the arm can be effectively reduced by the self-sensing actuator. The amplitude of sensor voltage is inversely proportional to the length of axially translating arm. And higher feedback control gain results in lower sensor voltages and vibration amplitudes.

Author(s):  
Hao Jiang ◽  
Xinhua Long ◽  
Guang Meng

In this paper, a study on the active control of vibration for peripheral milling is presented. Different from the control for the vibrations of cutting tool or workpiece, in this effort, the relative vibration between the workpiece and tool is selected as the control target. To reduce the relative vibration, a two-axis active work-holding stage, which is droved by two piezo-actuators, is designed and the control system synthesis method is used to determine the control gain. By this method, the dynamical stage is considered as plant while the complicated cutting process is treated as disturbance. The cutting vibration control can be considered as a robust disturbance rejection problem (RDRP), and the controller design is based on robust servo-mechanism method. Without the requirement on the model of disturbance, this method simplifies the vibration control problem and only the knowledge of frequencies of disturbance is required. Numerical results indicate the implemented system works well in cutting vibration cancellation.


2018 ◽  
Vol 24 (11) ◽  
pp. 1
Author(s):  
Hadeer Abd UL-Qader Mohammed ◽  
Hatem Rahem Wasmi

Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.   In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effect of changing the length of the smart cantilever beam. A cantilever beam with piezoelectric is modeled in Mechanical APDL ANSYS version 15.0 and verified this by using experimental work. The AVC was tested on a smart beam under different control gains in experimental work and chose the best control gain depending on FEM results for each length of the smart beam. The response of the smart beam is noticed to be different for every length and the reduction percentage for settling time was different for every length.  


Author(s):  
Kimihiko Nakano ◽  
Yoshihiro Suda ◽  
Shigeyuki Nakadai

Abstract Active vibration control using regenerated vibration energy, i.e., self-powered active control, is proposed. In the self-powered active control system, vibration energy is regenerated by an electric generator, which is called an energy regenerative damper, and is stored in the condenser. An actuator achieves active vibration control using the energy stored in the condenser. The variable-value resistance whose value can be controlled by a computer is utilized to control output force of the actuator. The authors examine the performance of the self-powered active vibration control on experiments and propose to apply this system to cab suspensions of a heavy duty truck. Through experiments, it is shown that the self-powered active vibration control system has better isolation performance than a semi-active and a passive control system. Numerical simulations demonstrate better isolation performance of the self-powered active vibration control in cab suspensions of a heavy duty truck.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3447 ◽  
Author(s):  
Yizhe Wang ◽  
Zhiwei Xu

A single piezoelectric patch can be used as both a sensor and an actuator by means of the self-sensing piezoelectric actuator, and the function of self-sensing shows several advantages in many application fields. However, some problems exist in practical application. First, a capacitance bridge circuit is set up to realize the function of self-sensing, but the precise matching of the capacitance of the bridge circuit is hard to obtain due to the standardization of electric components and variations of environmental conditions. Second, a local strain is induced by the self-sensing actuator that is not related to the global vibration of the structure, which would affect the performance of applications, especially in active vibration control. The above problems can be tackled by the feedforward compensation method that is proposed in this paper. A configured piezoelectric self-sensing circuit is improved by a feedforward compensation tunnel, and a gain of compensation voltage is adjusted by the time domain and frequency domain’s steepest descent algorithms to alleviate the capacitance mismatching and local strain problems. The effectiveness of the method is verified in the experiment of the active vibration control in a wind tunnel, and the control performance of compensated self-sensing actuation is compared to the performance with capacitance mismatching and local strain. It is found that the above problems have negative effects on the stability and performance of the vibration control and can be significantly eliminated by the proposed method.


2018 ◽  
Vol 29 (11) ◽  
pp. 2333-2343 ◽  
Author(s):  
En Lu ◽  
Wei Li ◽  
Xuefeng Yang ◽  
Yuqiao Wang ◽  
Yufei Liu

The optimal placement and active vibration control for piezoelectric smart single flexible manipulator are investigated in this study. Based on the assumed mode method and Hamilton’s principle, the dynamic equation of the piezoelectric smart single flexible manipulator is established. Then, the singular perturbation method is adopted and the coupled dynamic equation is decomposed into slow (rigid) and fast (flexible) subsystems. After that, the couple optimal placement criterion of piezoelectric actuators is proposed on the base of modal H2 norm of the fast subsystem and the change rate of natural frequencies. Using an improved particle swarm optimization algorithm, the optimal placement of piezoelectric actuators is realized. Subsequently, in order to verify the validity and feasibility of the presented optimal placement criterion, the composite controller is designed for the active vibration control of the piezoelectric smart single flexible manipulator. Finally, numerical simulations and experiments are presented. The results demonstrate that the piezoelectric smart single flexible manipulator system has a better single modal controllability and observability and has a good result on the vibration suppression using the optimization results of actuators. The proposed optimal placement criterion and method are feasible and effective.


2020 ◽  
pp. 107754632095753
Author(s):  
Seyedeh Marzieh Hosseini ◽  
Hamed Kalhori ◽  
Adel Al-Jumaily

An active vibration control system to monitor and suppress the human forearm tremor is proposed in this article. The forearm is modelled as a uniform flexible continuous beam supported by a pin joint and a rotational spring at one end, whereas the other end is free. The beam is covered with a layer of piezoelectric sensor on its top surface and a layer of piezoelectric actuator on its bottom surface to form a control system, through which a closed-loop active control paradigm is implemented for tremor suppression. The governing equation of motion is derived using the Hamilton principle as well as the Galerkin procedure, leading to a second-order ordinary differential equation in time. The vibration response of the structure to an external harmonic excitation, analogous to tremor, is obtained analytically, enabling parametric study of the control system for tremor reduction. Using the obtained analytical expression, the effects of various parameters such as the control gain, the piezoelectric coefficient and the dielectric constant on the vibration response are studied. The results indicated that the proposed active vibration control system is an effective tool for active vibration control. Increasing the control gain of the control system as well as the magnitude of the piezoelectric constant decreased the amplitude of vibration, whereas the dielectric constant of the piezoelectric material did not show to have a significant effect on the beam vibration. The obtained results will pave the way for further experimental exploration to take and fabricate the most appropriate piezoelectric material and to design an effective active vibration control system for tremor suppression in people with Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document