scholarly journals Full Debonding Process of Adhesively Bonded Composite and Metallic Pipe Joints under Torsion

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Han ◽  
Hong Yuan

Bonded joints are very common in many pipeline systems, in which the bond behavior of the joint interface is of crucial importance. This paper presents two analytical solutions for the debonding process of a pipe joint under torsion, assuming that the bond interface follows either an exponential softening bond-slip law or a simplified bilinear model. The solutions are general, applicable to composites and metallic and indeed other pipes. Based on the analytical solutions, the influences of the bond length and stiffness on the torque-displacement curve and ultimate load are investigated. The solutions can be used to explain the stress transfer mechanism, the interface crack propagation, and the ductility of the joint.

Author(s):  
Hong Yuan ◽  
Jun Han ◽  
Huanliang Zhang ◽  
Lan Zeng

In order to better understand the interfacial debonding behavior of pipe joints during the whole loading process, an analytical solution for the full-range behavior of adhesively bonded pipe joints under combined thermal and mechanical tensile loadings is presented in this paper. The solution was developed based on a simplified rigid-softening bond–slip model, and two cases with different softening region development were discussed. The analytical results were presented in a finite element model, and the effect of temperature on load–displacement curves and ultimate loads was shown based on the model. Through the nonlinear fracture mechanics, the analytical expressions of the interfacial shear stress and the load–displacement relationship can be obtained. The stress transfer mechanism, the interface crack propagation and the ductility behavior of the joints can be explained. This analytical result can help improve the potential application of fabricated structural components, precision instruments, oil and gas pipelines.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.


Author(s):  
Roohollah Sarfaraz ◽  
Luis P. Canal ◽  
Georgios Violakis ◽  
John Botsis ◽  
Véronique Michaud ◽  
...  

2009 ◽  
Vol 25 (04) ◽  
pp. 198-205
Author(s):  
George W. Ritter ◽  
David R. Speth ◽  
Yu Ping Yang

This paper describes a straightforward method for the design and certification of adhesively bonded composite to steel joints for the marine industry. Normally, certification is based on documented service at sea. Since these joints have not been previously deployed at sea, no data on their performance exist. Using an integrated combination of mechanical property evaluation and finite element modeling, the load- bearing capacity of a joint can be compared with the anticipated seaway loads. Calculated factors of safety for the sandwich design used here show that the joint has adequate strength to maintain structural integrity even after severe environmental exposure.


1994 ◽  
Vol 365 ◽  
Author(s):  
Chun-Hway Hsueh

ABSTRACTThe shear lag model has been used extensively to analyze the stress transfer in a singe fiberreinforced composite (i.e., a microcomposite). To achieve analytical solutions, various simplifications have been adopted in the stress analysis. Questions regarding the adequacy of those simplifications are discussed in the present study for the following two cases: bonded interfaces and frictional interfaces. Specifically, simplifications regarding (1) Poisson's effect, and (2) the radial dependences of axial stresses in the fiber and the matrix are addressed. For bonded interfaces, the former can be ignored, and the latter can generally be ignored. However, when the volume fraction of the fiber is high, the radial dependence of the axial stress in the fiber should be considered. For frictional interfaces, the latter can be ignored, but the former should be considered; however, it can be considered in an average sense to simplify the analysis. Comparisons among results obtained from analyses with various simplifications are made.


Sign in / Sign up

Export Citation Format

Share Document