scholarly journals Novel Hypomorphic Mutation inFANCD2Gene Observed in a Fetus with Multiple Congenital Anomalies

2016 ◽  
Vol 2016 ◽  
pp. 1-4
Author(s):  
Radoslava Vazharova ◽  
Svetlana Vragaleva ◽  
Violeta Dimitrova ◽  
Samuil Ivanov ◽  
Lubomir Balabanski ◽  
...  

Congenital anomalies affect 1% to 2% of the newborns. The urinary tract and the kidneys are involved in 4-5% of the cases while upper-extremities abnormalities are present in 10%. Certain anomalies occur in isolation, whereas others are associated with systemic conditions. The prenatal detection of fetal anomalies compatible with life is a challenge for both the parents and the physician. The prognosis for the fetus/newborn and the reproductive decisions of the family largely depend on the causes underlying the disease. The reported case is of a G2P1 pregnant woman referred for routine ultrasound scan at 24 weeks of gestation (w.g.). The fetus had growth retardation, right kidney agenesis, bilateral absence of radial bones and thumbs, radial deviation of the wrists, and short humeri. Nuchal fold thickness was 5 mm and there was a single umbilical artery. After termination of pregnancy, SNP array genotyping and next-generation sequencing of targeted candidate-genes were performed trying to clarify the etiology of the fetal polymalformative syndrome. A new hypomorphic mutation inFANCD2gene was found to underlie this fetal anomaly. The case illustrates that patients/families affected by rare monogenic disorders may benefit from application of modern technologies like microarrays and NGS.

2021 ◽  
Vol 102 (3) ◽  
Author(s):  
Akbar Dastjerdi ◽  
David J. Everest ◽  
Hannah Davies ◽  
Daniela Denk ◽  
Roland Zell

Dicistroviruses are single-stranded RNA viruses in the family Dicistroviridae. The viruses have mainly been detected in arthropods and are the cause of several devastating diseases in many of these species such as honeybees. Increasingly, dicistroviruses have also been detected in both mammalian and avian species in faeces, blood and liver, but with unconfirmed pathology. Here, we report a novel dicistrovirus detected in the intestinal content of a captive red squirrel with enteritis along with the disease history, pathology and genomic characterisation of the virus. Virus particle morphology resembled those of picornaviruses with a diameter of 28–32 nm but failed to be detected using a mammalian/avian pan viral microarray. Next-generation sequencing confirmed a dicistrovirus having a typical dicistrovirus genome organization, but with the polyprotein 1 being shorter by about 100 amino acids, compared to that of other dicistroviruses. Phylogenetic analysis of ORF1 and ORF2 sequences clustered the virus with two yet unassigned dicistroviruses detected in Gorilla gorilla and a freshwater arthropod and likely to be designated to a new genus. Our data further highlights the ever-growing diversity of dicistroviruses, but the clinical significance of the virus in mammalian species and particularly red squirrels has yet to be established.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Zhenya Li ◽  
Xinxin Li ◽  
Nan Song ◽  
Huiji Tang ◽  
Xinming Yin

Carabidae are one of the most species-rich families of beetles, comprising more than 40,000 described species worldwide. Forty-three complete or partial mitochondrial genomes (mitogenomes) from this family have been published in GenBank to date. In this study, we sequenced a nearly complete mitogenome of Amara aulica (Carabidae), using a next-generation sequencing method. This mitogenome was 16,646 bp in length, which encoded the typical 13 mitochondrial protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a putative control region. Combining with the published mitogenomes of Carabidae and five outgroup species from Trachypachidae, Gyrinidae and Dytiscidae, we performed phylogenetic estimates under maximum likelihood and Bayesian inference criteria to investigate the phylogenetic relationships of carabid beetles. The results showed that the family Carabidae was a non-monophyletic assemblage. The subfamilies Cicindelinae, Elaphrinae, Carabinae, Trechinae and Harpalinae were recovered as monophyletic groups. Moreover, the clade (Trechinae + (Brachininae + Harpalinae)) was consistently recovered in all analyses.


Author(s):  
Jie Huang ◽  
Stefano Pallotti ◽  
Qianling Zhou ◽  
Marcus Kleber ◽  
Xiaomeng Xin ◽  
...  

Abstract The identification of rare haplotypes may greatly expand our knowledge in the genetic architecture of both complex and monogenic traits. To this aim, we developed PERHAPS (Paired-End short Reads-based HAPlotyping from next-generation Sequencing data), a new and simple approach to directly call haplotypes from short-read, paired-end Next Generation Sequencing (NGS) data. To benchmark this method, we considered the APOE classic polymorphism (*1/*2/*3/*4), since it represents one of the best examples of functional polymorphism arising from the haplotype combination of two Single Nucleotide Polymorphisms (SNPs). We leveraged the big Whole Exome Sequencing (WES) and SNP-array data obtained from the multi-ethnic UK BioBank (UKBB, N=48,855). By applying PERHAPS, based on piecing together the paired-end reads according to their FASTQ-labels, we extracted the haplotype data, along with their frequencies and the individual diplotype. Concordance rates between WES directly called diplotypes and the ones generated through statistical pre-phasing and imputation of SNP-array data are extremely high (>99%), either when stratifying the sample by SNP-array genotyping batch or self-reported ethnic group. Hardy-Weinberg Equilibrium tests and the comparison of obtained haplotype frequencies with the ones available from the 1000 Genome Project further supported the reliability of PERHAPS. Notably, we were able to determine the existence of the rare APOE*1 haplotype in two unrelated African subjects from UKBB, supporting its presence at appreciable frequency (approximatively 0.5%) in the African Yoruba population. Despite acknowledging some technical shortcomings, PERHAPS represents a novel and simple approach that will partly overcome the limitations in direct haplotype calling from short read-based sequencing.


2016 ◽  
Vol 95 (13) ◽  
pp. 1457-1463 ◽  
Author(s):  
M.K. Prasad ◽  
S. Laouina ◽  
M. El Alloussi ◽  
H. Dollfus ◽  
A. Bloch-Zupan

Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of diseases characterized by enamel defects. The authors have identified a large consanguineous Moroccan family segregating different clinical subtypes of hypoplastic and hypomineralized AI in different individuals within the family. Using targeted next-generation sequencing, the authors identified a novel heterozygous nonsense mutation in COL17A1 (c.1873C>T, p.R625*) segregating with hypoplastic AI and a novel homozygous 8-bp deletion in C4orf26 (c.39_46del, p.Cys14Glyfs*18) segregating with hypomineralized-hypoplastic AI in this family. This study highlights the phenotypic and genotypic heterogeneity of AI that can exist even within a single consanguineous family. Furthermore, the identification of novel mutations in COL17A1 and C4orf26 and their correlation with distinct AI phenotypes can contribute to a better understanding of the pathophysiology of AI and the contribution of these genes to amelogenesis.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 871 ◽  
Author(s):  
Martine De Rycke ◽  
Veerle Berckmoes

Preimplantation genetic testing (PGT) has evolved into a well-established alternative to invasive prenatal diagnosis, even though genetic testing of single or few cells is quite challenging. PGT-M is in theory available for any monogenic disorder for which the disease-causing locus has been unequivocally identified. In practice, the list of indications for which PGT is allowed may vary substantially from country to country, depending on PGT regulation. Technically, the switch from multiplex PCR to robust generic workflows with whole genome amplification followed by SNP array or NGS represents a major improvement of the last decade: the waiting time for the couples has been substantially reduced since the customized preclinical workup can be omitted and the workload for the laboratories has decreased. Another evolution is that the generic methods now allow for concurrent analysis of PGT-M and PGT-A. As innovative algorithms are being developed and the cost of sequencing continues to decline, the field of PGT moves forward to a sequencing-based, all-in-one solution for PGT-M, PGT-SR, and PGT-A. This will generate a vast amount of complex genetic data entailing new challenges for genetic counseling. In this review, we summarize the state-of-the-art for PGT-M and reflect on its future.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sook-Young Lee ◽  
Chul-Un Chung ◽  
Jun Soo Park ◽  
Jae-Ku Oem

AbstractBats are natural reservoirs for potential zoonotic viruses. In this study, next-generation sequencing was performed to obtain entire genome sequences of picornavirus from a picornavirus-positive bat feces sample (16BF77) and to explore novel viruses in a pooled bat sample (16BP) from samples collected in South Korea, 2016. Fourteen mammalian viral sequences were identified from 16BF77 and 29 from 16BP, and verified by RT-PCR. The most abundant virus in 16BF77 was picornavirus. Highly variable picornavirus sequences encoding 3Dpol were classified into genera Kobuvirus, Shanbavirus, and an unassigned group within the family Picornaviridae. Amino acid differences between these partial 3Dpol sequences were ≥ 65.7%. Results showed that one bat was co-infected by picornaviruses of more than two genera. Retrovirus, coronavirus, and rotavirus A sequences also were found in the BP sample. The retrovirus and coronavirus genomes were identified in nine and eight bats, respectively. Korean bat retroviruses and coronavirus demonstrated strong genetic relationships with a Chinese bat retrovirus (RfRV) and coronavirus (HKU5-1), respectively. A co-infection was identified in one bat with a retrovirus and a coronavirus. Our results indicate that Korean bats were multiply infected by several mammal viruses.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 706-706
Author(s):  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Hans-Ulrich Klein ◽  
Sonja Schindela ◽  
Martin Dugas ◽  
...  

Abstract Abstract 706 Today, the genetic characterization necessary for optimal treatment of acute myeloid leukemia (AML) requires a combination of different labor-intensive methods such as chromosome banding analysis, sequencing for the detection of molecular mutations, and RT-PCR for the confirmation of characteristic fusion genes. DNA sequence enrichment from complex genomic samples using microarrays has recently been proposed to enable a targeted Next-Generation Sequencing (NGS) approach. Here, we combined 454 PicoTiterPlate (PTP) pyrosequencing with long-oligonucleotide sequence capture arrays to evaluate whether this technique allows a comprehensive genetic characterization in a one-step procedure (Roche Diagnostics Corporation, Branford, CT). 6 AML cases were analyzed with either known chromosomal aberrations–inversions and translocations–leading to fusion genes (CBFB-MYH11, RUNX1-RUNX1T1, MLL-MLLT3, MLL-unidentified fusion partner) or molecular mutations (KIT, FLT3-ITD, FLT3-TKD, and KRAS). A custom 1.91 Mb microarray was designed to contain capture probes for all coding regions of 92 target genes with relevance in leukemia, including e.g. KIT, NF1, KRAS, CEBPA, NPM1, FLT3, IKZF1, or TP53 (1559 exons). In addition, the complete genomic regions were targeted for the genes CBFB, RUNX1, and MLL (NimbleGen 385K format; Madison, WI). Starting with 20 μg of genomic DNA, this array design allowed a median 207-fold DNA enrichment of the targeted genomic loci. For sequencing, 454 Titanium chemistry was applied and in median 56.1 Mb of sequence data were generated per patient (median number of reads: 178.146). In median, 66.0% of reads were mapped to the original sequence capture array design, resulting in 18.7-fold median coverage per patient. The applied NGS data analysis pipeline used algorithms to map the obtained reads both exactly against the human genome, but also searched for chimeric sequences mapping to different regions in the genome. By this approach all corresponding fusion genes were detected as RUNX1-RUNX1T1 as well as the reciprocal RUNX1T1-RUNX1; CBFB-MYH11 and MYH11-CBFB; and MLL-MLLT3 and MLLT3-MLL, respectively. Interestingly, in one case a translocation t(11;19)(q23;p13) had been observed in chromosome banding analysis and the involvement of the MLL gene had been proven by FISH. However, using RT-PCR neither MLL-MLLT1 nor MLL-ELL fusion transcripts could be amplified. In contrast, the NGS approach identified chimeric reads containing both MLL and ELL sequences and, in addition, chimeric reads which were composed of SFRS14 (splicing factor, arginine/serine-rich 14; also located on 19p13 centromeric of ELL) and MLL. This suggested that a deletion had occurred in the breakpoint area and thus prevented the formation of a reciprocal ELL-MLL fusion gene. To confirm this assumption we performed a SNP array analysis (Affymetrix genome-wide human SNP array 6.0) and data from the SNP microarrays demonstrated a 615 kb deletion on 19p13, flanked by ELL and SFRS14, spanning from chr19: 18,346,048 - 18,961,490. Furthermore, with NGS it was possible to detect all molecular mutations identified by conventional methods including point mutations (KRAS G12C, FLT3-TKD D835Y), deletions (KIT D419X), and insertions (FLT3-ITD: 63 base pair length mutation). In conclusion, we demonstrated for the first time that fusion genes, point mutations, as well as deletions and insertions can be detected in a one-step methodological approach using the combination of a targeted DNA sequence enrichment assay followed by NGS technology. Furthermore, the genomic representation of only one of the partner genes of a chimeric fusion on this capture platform is sufficient to identify also any potentially unknown partner gene. As such, this novel assay has a strong potential to become an important method for a comprehensive genetic characterization of leukemias and other malignancies. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. LBA-2-LBA-2 ◽  
Author(s):  
Adrianna Vlachos ◽  
Jason Farrar ◽  
Eva Atsidaftos ◽  
Ellen Muir ◽  
Thomas C. Markello ◽  
...  

Abstract Abstract LBA-2 Background: 5q- myelodysplastic syndrome is a rare, acquired macrocytic anemia with a female predominance. The bone marrow is characterized by a paucity of erythroid precursors with relatively normal leukocyte and platelet counts and no excess blasts. The mean age at diagnosis is approximately 70 years. The phenotype of 5q deletion has been shown to result from haploinsufficiency of the RPS14 gene. Historically red blood cell transfusions have been the primary treatment; however lenalidomide has recently been effective in ameliorating the anemia with a response rate of 67%. DBA is a rare heritable red cell aplasia which usually presents in infancy. It too is characterized by a bone marrow deficient in erythroid precursors. Mutations or deletions in eleven ribosomal protein (RP) genes, resulting in protein haploinsufficiency, have been reported in 50–60% of patients. To date RPS14 mutations have not been identified in DBA patients. Array Comparative Genomic Hybridization (CGH) has been used to identify large deletions in patients with DBA, but a more sensitive approach was hypothesized to identify additional deletions. Purpose: To address the question of whether chromosomal deletions could be the underlying defect in patients with DBA who did not have mutations in the known RP genes, Single Nucleotide Polymorphism (SNP) genotyping array hybridization was utilized. Methods: Seventy-five patient samples from the DBA Registry (DBAR) underwent resequencing of 80 RP genes. Approximately 40% of the patients had no identifiable mutation. High resolution SNP array genotyping analysis was done on 23 probands who did not have a mutation detected by resequencing. Results: An acquired internal deletion on chromosome 5q involving RPS14 was identified in one of 23 patients with presumed DBA. The patient presented with anemia at 5 10/12 years of age. The hemoglobin was 8.4 g/dl, MCV 108.2 fL, and reticulocyte count 0.4%. The erythrocyte adenosine deaminase (eADA) activity, elevated in 85% of DBA patients, was normal. The bone marrow showed decreased cellularity and megaloblastoid changes in the erythroid series. There were adequate numbers of megakaryocytes with no hypolobulation. Cytogenetics performed at diagnosis in 1991 appeared normal. The patient had no significant family history or congenital anomalies. A diagnosis of non-classical DBA was made. The patient failed a trial of corticosteroids and had remained transfusion-dependent for 19 years. No RP gene mutation was identified by sequencing. SNP array genotyping analysis identified mosaicism in two discrete regions covering ∼17.7 Mb on 5q-, with an estimated 63.7% monosomy and 36.3% disomy in this region. The major region extends from 141.1M to 157.2M (hg18), including all of the 5q- syndrome commonly deleted region (CDR) at 5q33, though it excludes the 5q31 CDR, miR146a, as well as Cdc25C and PPP2Acα, factors for which haploinsufficient expression has previously been suggested to be important in response to lenalidomide. SNP array genotyping from purified populations indicated that lymphocytes were >95% normal, while the myeloid cells were >95% 5q-. CD34+ cells showed a marked decrease in both myeloid and erythroid colony formation. Patient fibroblasts were normal and neither of the parents have 5q abnormalities by SNP analysis. Although the deletion was not identified in 1991, the 46,XX,der(5)del(5)(q15q22)del(5)(q32q33) deletion was detected on high resolution karyotyping in a post-SNP array genotyping marrow sample. Haploinsufficiency of RPS14 was confirmed by quantitative RT-PCR. After a trial of lenalidomide, complicated by Grade 4 neutropenia and Grade 3 thrombocytopenia, the patient has a reticulocyte count of 7.4% (from a previous baseline of <0.2%) and has achieved a hemoglobin of 11.1 gm/dl without transfusion support. Conclusions: Patients with non-classical DBA, who also have no congenital anomalies and normal eADA activity, may have somatically acquired 5q deletions with RPS14 haploinsufficiency. The DBAR is presently performing SNP array genotyping on other DBA patients who fit these criteria. These data suggest that haploinsufficiency of Cdc25C and PPP2Acα are not required for an erythroid response to lenolidamide. Reclassification of non-classical DBA patients as 5q- MDS offers them a potential treatment option with lenalidomide. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 89 (16) ◽  
pp. 8657-8660 ◽  
Author(s):  
J. Hepojoki ◽  
P. Salmenperä ◽  
T. Sironen ◽  
U. Hetzel ◽  
Y. Korzyukov ◽  
...  

Recently, novel arenaviruses were found in snakes with boid inclusion body disease (BIBD); these form the new genusReptarenaviruswithin the familyArenaviridae. We used next-generation sequencing andde novosequence assembly to investigate reptarenavirus isolates from our previous study. Four of the six isolates and all of the samples from snakes with BIBD contained at least two reptarenavirus species. The viruses sequenced comprise four novel reptarenavirus species and a representative of a new arenavirus genus.


Sign in / Sign up

Export Citation Format

Share Document