scholarly journals A Calculation Method for the Sloshing Impact Pressure Imposed on the Roof of a Passive Water Storage Tank of AP1000

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Daogang Lu ◽  
Xiaojia Zeng ◽  
Junjie Dang ◽  
Yu Liu

There is a large water storage tank installed at the top of containment of AP1000, which can supply the passive cooling. In the extreme condition, sloshing of the free surface in the tank may impact on the roof under long-period earthquake. For the safety assessment of structure, it is necessary to calculate the impact pressure caused by water sloshing. Since the behavior of sloshing impacted on the roof is involved into a strong nonlinear phenomenon, it is a little difficult to calculate such pressure by theoretical or numerical method currently. But it is applicable to calculate the height of sloshing in a tank without roof. In the present paper, a simplified method was proposed to calculate the impact pressure using the sloshing wave height, in which we first marked the position of the height of roof, then produced sloshing in the tank without roof and recorded the maximum wave height, and finally regarded approximately the difference between maximum wave height and roof height as the impact pressure head. We also designed an experiment to verify this method. The experimental result showed that this method overpredicted the impact pressure with a certain error of no more than 35%. By the experiment, we conclude that this method is conservative and applicable for the engineering design.

Author(s):  
Bingde Chen ◽  
Haifeng Zheng ◽  
Jie Li

The influences of water sub-cooling on water discharge behaviors from the water storage tank were studied experimentally with a test rig, which consists of a water vessel, a steam supplier, valves and piping. From this study, it is found that the gravitational discharging process is effected strongly by the steam condensation, taking place between steam and cold water in the vessel during discharge. Increased sub-cooling of the water, enhances the steam condensation, and promotes a deeper penetration of steam into water. The two modes of condensation identified in this study are: steam-supply-limit-mode and steam-condensation-limit-mode. The first mode occurs at the primary discharge period if water sub-cooling is large than a certain value, for example, 50°C sub-cooling in this study. Conclusions were derived based on this study for the impact of subcooling on discharge characteristics with respect to flow, pressure, and other parameters. Some suggestions to avoid or reduce undesired phenomena are also presented.


2020 ◽  
Vol 180 ◽  
pp. 107029
Author(s):  
Pin Wu ◽  
Zhichao Wang ◽  
Xiaofeng Li ◽  
Zhaowei Xu ◽  
Yingxia Yang ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Musa Manga ◽  
Timothy G. Ngobi ◽  
Lawrence Okeny ◽  
Pamela Acheng ◽  
Hidaya Namakula ◽  
...  

Abstract Background Household water storage remains a necessity in many communities worldwide, especially in the developing countries. Water storage often using tanks/vessels is envisaged to be a source of water contamination, along with related user practices. Several studies have investigated this phenomenon, albeit in isolation. This study aimed at developing a systematic review, focusing on the impacts of water storage tank/vessel features and user practices on water quality. Methods Database searches for relevant peer-reviewed papers and grey literature were done. A systematic criterion was set for the selection of publications and after scrutinizing 1106 records, 24 were selected. These were further subjected to a quality appraisal, and data was extracted from them to complete the review. Results and discussion Microbiological and physicochemical parameters were the basis for measuring water quality in storage tanks or vessels. Water storage tank/vessel material and retention time had the highest effect on stored water quality along with age, colour, design, and location. Water storage tank/vessel cleaning and hygiene practices like tank/vessel covering were the user practices most investigated by researchers in the literature reviewed and they were seen to have an impact on stored water quality. Conclusions There is evidence in the literature that storage tanks/vessels, and user practices affect water quality. Little is known about the optimal tank/vessel cleaning frequency to ensure safe drinking water quality. More research is required to conclusively determine the best matrix of tank/vessel features and user practices to ensure good water quality.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4741
Author(s):  
María Gasque ◽  
Federico Ibáñez ◽  
Pablo González-Altozano

This paper demonstrates that it is possible to characterize the water temperature profile and its temporal trend in a hot water storage tank during the thermal charge process, using a minimum number of thermocouples (TC), with minor differences compared to experimental data. Four experimental tests (two types of inlet and two water flow rates) were conducted in a 950 L capacity tank. For each experimental test (with 12 TC), four models were developed using a decreasing number of TC (7, 4, 3 and 2, respectively). The results of the estimation of water temperature obtained with each of the four models were compared with those of a fifth model performed with 12 TC. All models were tested for constant inlet temperature. Very acceptable results were achieved (RMSE between 0.2065 °C and 0.8706 °C in models with 3 TC). The models were also useful to estimate the water temperature profile and the evolution of thermocline thickness even with only 3 TC (RMSE between 0.00247 °C and 0.00292 °C). A comparison with a CFD model was carried out to complete the study with very small differences between both approaches when applied to the estimation of the instantaneous temperature profile. The proposed methodology has proven to be very effective in estimating several of the temperature-based indices commonly employed to evaluate thermal stratification in water storage tanks, with only two or three experimental temperature data measurements. It can also be used as a complementary tool to other techniques such as the validation of numerical simulations or in cases where only a few experimental temperature values are available.


Sign in / Sign up

Export Citation Format

Share Document