scholarly journals Nonintrusive Method Based on Neural Networks for Video Quality of Experience Assessment

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Diego José Luis Botia Valderrama ◽  
Natalia Gaviria Gómez

The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users. However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks) and the RNNs (Random Neural Networks) is applied to evaluate the subjective quality metrics MOS (Mean Opinion Score) and the PSNR (Peak Signal Noise Ratio), SSIM (Structural Similarity Index Metric), VQM (Video Quality Metric), and QIBF (Quality Index Based Frame). The proposed model allows establishing the QoS (Quality of Service) based in the strategyDiffserv. The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error), and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.

Author(s):  
Jelena Vlaović ◽  
Drago Žagar ◽  
Snježana Rimac-Drlje ◽  
Mario Vranješ

With the development of Video on Demand applications due to the availability of high-speed internet access, adaptive streaming algorithms have been developing and improving. The focus is on improving user’s Quality of Experience (QoE) and taking it into account as one of the parameters for the adaptation algorithm. Users often experience changing network conditions, so the goal is to ensure stable video playback with satisfying QoE level. Although subjective Video Quality Assessment (VQA) methods provide more accurate results regarding user’s QoE, objective VQA methods cost less and are less time-consuming. In this article, nine different objective VQA methods are compared on a large set of video sequences with various spatial and temporal activities. VQA methods used in this analysis are: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), MultiScale Structural Similarity Index (MS-SSIM), Video Quality Metric (VQM), Mean Sum of Differences (DELTA), Mean Sum of Absolute Differences (MSAD), Mean Squared Error (MSE), Netflix Video Multimethod Assessment Fusion (Netflix VMAF) and Visual Signal-to-Noise Ratio (VSNR). The video sequences used for testing purposes were encoded according to H.264/AVC with twelve different target coding bitrates, at three different spatial resolutions (resulting in a total of 190 sequences). In addition to objective quality assessment, subjective quality assessment was performed for these sequences. All results acquired by objective VQA methods have been compared with subjective Mean Opinion Score (MOS) results using Pearson Linear Correlation Coefficient (PLCC). Measurement results obtained on a large set of video sequences with different spatial resolutions show that VQA methods like SSIM and VQM correlate better with MOS results compared to PSNR, SSIM, VSNR, DELTA, MSE, VMAF and MSAD. However, the PLCC results for SSIM and VQM are too low (0.7799 and 0.7734, respectively), for the usage of these methods in streaming services instead of subjective testing. These results suggest that more efficient VQA methods should be developed to be used in streaming testing procedures as well as to support the video segmentation process. Furthermore, when comparing results obtained for different spatial resolutions, it can be concluded that the quality of video sequences encoded at lower spatial resolutions in cases of lower target coding bitrate is higher compared to the quality of video sequences encoded at higher spatial resolutions at the same target coding bitrate, particularly when video sequences with higher spatial and temporal information are used.


2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1387
Author(s):  
Muhamad Hanif Jofri ◽  
Ida Aryanie Bahrudin ◽  
Noor Zuraidin Mohd Safar ◽  
Juliana Mohamed ◽  
Abdul Halim Omar

Video streaming is widely available nowadays. Moreover, since the pandemic hit all across the globe, many people stayed home and used streaming services for news, education,  and entertainment. However,   when streaming in session, user Quality of Experience (QoE) is unsatisfied with the video content selection while streaming on smartphone devices. Users are often irritated by unpredictable video quality format displays on their smartphone devices. In this paper, we proposed a framework video selection scheme that targets to increase QoE user satisfaction. We used a video content selection algorithm to map the video selection that satisfies the user the most regarding streaming quality. Video Content Selection (VCS) are classified into video attributes groups. The level of VCS streaming will gradually decrease to consider the least video selection that users will not accept depending on video quality. To evaluate the satisfaction level, we used the Mean Opinion Score (MOS) to measure the adaptability of user acceptance towards video streaming quality. The final results show that the proposed algorithm shows that the user satisfies the video selection, by altering the video attributes.


Author(s):  
Rosinei Oliveira ◽  
Ádamo L. Santana ◽  
João C. W. A. Costa ◽  
Carlos R. L. Frances ◽  
Elisangela Aguiar ◽  
...  

It is expected that multimedia applications will be the most abundant application in the Internet and thousands of new wireless and mobile users will produce and share multimedia streaming content ubiquitously. In this multimedia-aware system, it is important to assure the end-to-end quality level support for video and voice applications in wireless systems. Traditional Quality of Service techniques assure the delivery of those services with packet differentiation assurance and indicate the impact of multimedia traffic only on the network performance; however, they do not reflect the user’s perception. Recent advances in multimedia are exploring new Quality of Experience approaches and including metrics and control schemes in wireless networking systems in order to increase the user´s satisfaction and optimize network resources. Operations based on Quality of Experience can be used as an indicator of how a networking environment meets the end-user’s needs and new assessment and packet control approaches are still important challenges. This chapter presents an overview of the most recent advances and challenges in assessment and traffic conditioner procedures for wireless multimedia streaming systems. In addition, an intelligent packet dropper mechanism for IEEE 802.11e systems is proposed and evaluated by using the Network Simulator 2, real video sequences and Evalvid tool. The benefit and the impact of the proposed solution is evaluated by using well-know objective and subjective Quality of Experience metrics, namely, Peak Signal-to-Noise Ratio, Video Quality Metric, Structural Similarity Index and Mean Option Score.


2021 ◽  
Vol 48 (4) ◽  
pp. 37-40
Author(s):  
Nikolas Wehner ◽  
Michael Seufert ◽  
Joshua Schuler ◽  
Sarah Wassermann ◽  
Pedro Casas ◽  
...  

This paper addresses the problem of Quality of Experience (QoE) monitoring for web browsing. In particular, the inference of common Web QoE metrics such as Speed Index (SI) is investigated. Based on a large dataset collected with open web-measurement platforms on different device-types, a unique feature set is designed and used to estimate the RUMSI - an efficient approximation to SI, with machinelearning based regression and classification approaches. Results indicate that it is possible to estimate the RUMSI accurately, and that in particular, recurrent neural networks are highly suitable for the task, as they capture the network dynamics more precisely.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5540
Author(s):  
Nayeem Hasan ◽  
Md Saiful Islam ◽  
Wenyu Chen ◽  
Muhammad Ashad Kabir ◽  
Saad Al-Ahmadi

This paper proposes an encryption-based image watermarking scheme using a combination of second-level discrete wavelet transform (2DWT) and discrete cosine transform (DCT) with an auto extraction feature. The 2DWT has been selected based on the analysis of the trade-off between imperceptibility of the watermark and embedding capacity at various levels of decomposition. DCT operation is applied to the selected area to gather the image coefficients into a single vector using a zig-zig operation. We have utilized the same random bit sequence as the watermark and seed for the embedding zone coefficient. The quality of the reconstructed image was measured according to bit correction rate, peak signal-to-noise ratio (PSNR), and similarity index. Experimental results demonstrated that the proposed scheme is highly robust under different types of image-processing attacks. Several image attacks, e.g., JPEG compression, filtering, noise addition, cropping, sharpening, and bit-plane removal, were examined on watermarked images, and the results of our proposed method outstripped existing methods, especially in terms of the bit correction ratio (100%), which is a measure of bit restoration. The results were also highly satisfactory in terms of the quality of the reconstructed image, which demonstrated high imperceptibility in terms of peak signal-to-noise ratio (PSNR ≥ 40 dB) and structural similarity (SSIM ≥ 0.9) under different image attacks.


Author(s):  
André F. Marquet ◽  
Jânio M. Monteiro ◽  
Nuno J. Martins ◽  
Mario S. Nunes

In legacy television services, user centric metrics have been used for more than twenty years to evaluate video quality. These subjective assessment metrics are usually obtained using a panel of human evaluators in standard defined methods to measure the impairments caused by a diversity of factors of the Human Visual System (HVS), constituting what is also called Quality of Experience (QoE) metrics. As video services move to IP networks, the supporting distribution platforms and the type of receiving terminals is getting more heterogeneous, when compared with classical video distributions. The flexibility introduced by these new architectures is, at the same time, enabling an increment of the transmitted video quality to higher definitions and is supporting the transmission of video to lower capability terminals, like mobile terminals. In IP Networks, while Quality of Service (QoS) metrics have been consistently used for evaluating the quality of a transmission and provide an objective way to measure the reliability of communication networks for various purposes, QoE metrics are emerging as a solution to address the limitations of conventional QoS measuring when evaluating quality from the service and user point of view. In terms of media, compressed video usually constitutes a very interdependent structure degrading in a non-graceful manner when exposed to Binary Erasure Channels (BEC), like the Internet or wireless networks. Accordingly, not only the type of encoder and its major encoding parameters (e.g. transmission rate, image definition or frame rate) contribute to the quality of a received video, but also QoS parameters are usually a cause for different types of decoding artifacts. As a result of this, several worldwide standard entities have been evaluating new metrics for the subjective assessment of video transmission over IP networks. In this chapter we are especially interested in explaining some of the best practices available to monitor, evaluate and assure good levels of QoE in packet oriented networks for rich media applications like high quality video streaming. For such applications, service requirements are relatively loose or difficult to quantify and therefore specific techniques have to be clearly understood and evaluated. By the mid of the chapter the reader should have understood why even networks with excellent QoS parameters might have QoE issues, as QoE is a systemic approach that does not relate solely to QoS but to the ensemble of components composing the communication system.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hongyun Zheng ◽  
Yongxiang Zhao ◽  
Xi Lu ◽  
Rongzhen Cao

Video service has become a killer application for mobile terminals. For providing such services, most of the traffic is carried by the Dynamic Adaptive Streaming over HTTP (DASH) technique. The key to improve video quality perceived by users, i.e., Quality of Experience (QoE), is to effectively characterize it by using measured data. There have been many literatures that studied this issue. Some existing solutions use probe mechanism at client/server, which, however, are not applicable to network operator. Some other solutions, which aimed to predict QoE by deep packet parsing, cannot work properly as more and more video traffic is encrypted. In this paper, we propose a fog-assisted real-time QoE prediction scheme, which can predict the QoE of DASH-supported video streaming using fog nodes. Neither client/server participations nor deep packet parsing at network equipment is needed, which makes this scheme easy to deploy. Experimental results show that this scheme can accurately detect QoE with high accuracy even when the video traffic is encrypted.


Sign in / Sign up

Export Citation Format

Share Document