scholarly journals Catalytic Pyrolysis of Low Density Polyethylene Using Cetyltrimethyl Ammonium Encapsulated Monovacant Keggin UnitsC19H42N4H3(PW11O39)and ZSM-5

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Madeeha Batool ◽  
Asma Tufail Shah ◽  
Muhammad Imran Din ◽  
Baoshan Li

The effect of the catalysts on the pyrolysis of commercial low density polyethylene (LDPE) has been studied in a batch reactor. The thermal catalytic cracking of the LDPE has been done using cetyltrimethyl ammonium encapsulated monovacant keggin units (C19H42N)4H3(PW11O39), labeled as CTA-POM and compared with the ZSM-5 catalyst. GC-MS results showed that catalytic cracking of LDPE beads generated oilier fraction over CTA-POM as compared to ZSM-5. Thus, the use of CTA-POM is more significant because it yields more useful fraction. It was also found that the temperature required for the thermal degradation of LDPE was lower when CTA-POM was used as a catalyst while high temperature was required for degradation over ZSM-5 catalyst. Better activity of CTA-POM was due to hydrophobic nature of CTA moiety which helps in catalyst mobility and increases its interaction with hydrocarbons.

2007 ◽  
Vol 124-126 ◽  
pp. 1757-1760 ◽  
Author(s):  
Jong Ki Jeon ◽  
Hyun Ju Park ◽  
Jin Heong Yim ◽  
Ji Man Kim ◽  
Jin Ho Jung ◽  
...  

Applicability of Al-MCM-48 as a catalyst for the linear low density polyethylene (LLDPE) degradation was investigated using a thermogravimetric analyzer as well as a batch reactor. The degradation products were analyzed by GC/MS, GC-TCD and GC-FID. The activation energy of LLDPE degradation was lowered by the addition of Al-MCM-48. The oil and gas yields were higher over Al-MCM-48 than those over Si-MCM-48. Al-MCM-48 generated mainly C7-C10 hydrocarbons, while Si-MCM-48 exhibited the relatively broader distribution of the oil products (C8-C14). Al-MCM-48 showed high catalytic stability for the LLDPE degradation.


Author(s):  
Azubuike Francis Anene ◽  
Siw Bodil Fredriksen ◽  
Kai Arne Sætre ◽  
Lars -Andre Tokheim

Thermal and catalytic pyrolysis of virgin low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and mixtures of LDPE/PP were carried out in a 200 ml laboratory scale batch reactor at 460 °C in a nitrogen atmosphere. Thermogravimetric analysis (TGA) was carried out to study the thermal and catalytic degradation of the polymers at a heating rate of 10 °C/min. The amount of PP was varied in the LDPE/PP mixture to explore its effect on the reaction. In thermal degradation (TGA) of LDPE/PP blends, a lower decomposition temperature was observed for LDPE/PP mixtures compared to pure LDPE, indicating interaction between the two polymer types. In the presence of a catalyst (CAT-2), the degradation temperatures for the pure polymers were reduced. The TGA results were validated in a batch reactor using PP and LDPE respectively. Thermal cracking results showed that the oil product contains a significant amount of gasoline (C7 − C12) and diesel (C13 − C20) hydrocarbon fractions. The catalyst enhanced cracking at lower temperatures and narrowed the hydrocarbon distribution in the oil towards the gasoline range fraction (C7 – C12). The result suggests that the oil produced from catalytic pyrolysis of waste plastics has a potential as an alternative fuel.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121164
Author(s):  
Wei Luo ◽  
Zhongyi Fan ◽  
Jun Wan ◽  
Qing Hu ◽  
Hang Dong ◽  
...  

e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 373-381 ◽  
Author(s):  
Xinxin Cao ◽  
Mengqi Wu ◽  
Aiguo Zhou ◽  
You Wang ◽  
Xiaofang He ◽  
...  

AbstractA novel two-dimensional material MXene was used to synthesize nanocomposites with linear low-density polyethylene (LLDPE). The influence of MXene on crystallization and thermal degradation kinetics of LLDPE was investigated. Non-isothermal crystallization kinetics was investigated by using differential scanning calorimetry (DSC). The experimental data was analyzed by Jeziorny theory and the Mo method. It is found that MXene acted as a nucleating agent during the non-isothermal crystallization process, and 2 wt% MXene incorporated in the nanocomposites could accelerate the crystallization rate. Findings from activation energy calculation for non-isothermal crystallization came to the same conclusion. Thermal gravity (TG) analysis of MXene/LLDPE nanocomposites was conducted at different heating rates, and the TG thermograms suggested the nanocomposites showed an improvement in thermal stability. Apparent activation energy (Ea) of thermal degradation was calculated by the Kissinger method, and Ea values of nanocomposites were higher than that of pure LLDPE. The existence of MXene seems to lead to better thermal stability in composites.


2013 ◽  
Vol 27 (4) ◽  
pp. 2202-2208 ◽  
Author(s):  
Laura C. Lerici ◽  
María S. Renzini ◽  
Ulises Sedran ◽  
Liliana B. Pierella

2020 ◽  
Vol 4 (9) ◽  
pp. 4614-4624
Author(s):  
Chenxi Wang ◽  
Hanwu Lei ◽  
Moriko Qian ◽  
Erguang Huo ◽  
Yunfeng Zhao ◽  
...  

Biochar catalysts derived from corn stover and Douglas fir were employed for the catalytic pyrolysis of model low-density polyethylene (LDPE) and real waste plastics.


2019 ◽  
Vol 26 (6) ◽  
Author(s):  
Shohel Siddique ◽  
Grant David Smith ◽  
Kyari Yates ◽  
Ajay Kumar Mishra ◽  
Kerr Matthews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document