scholarly journals Small-Signal Modeling and Analysis of Grid-Connected Inverter with Power Differential Droop Control

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Xin Chen ◽  
Changhua Zhang ◽  
Qi Huang ◽  
Mark Ofori-Oduro

The conventional voltage and frequency droop control strategy in grid-connected inverter suffers a major setback in the presence of disturbance by producing oscillations. Adding a power differential term in droop controller is an effective way to address such drawback. In this paper, grid-connected inverter’s small-signal models of the conventional droop control and the power differential droop control are established. The eigenvalues of the models are then determined by system matrix. The eigenvalues analysis is presented which helps in identifying the relationship between the system stability and controller parameters. It is concluded that the damping ratio of dominant low-frequency eigenvalues increased and the oscillation caused by the disturbance is suppressed when a power differential term is added to the droop control method. The MATLAB/Simulink models of grid-connected inverter with both control strategies are also established to validate the results of small-signal analysis.

2021 ◽  
Author(s):  
Yujian Ren ◽  
Jingxiang Li ◽  
Yuanzhe Dong ◽  
Dong Jin ◽  
Shengdun Zhao

Abstract High efficiency and good section quality are two main objectives of metal bar cropping. A suitable control method can help to achieve both goals. An investigation of the control method of low-cycle fatigue cropping (LCFC) based on the acoustic emission (AE) technique has been proposed in this study. Ring-down counts and kurtosis are used to monitor the whole process of LCFC. The results showed that kurtosis is more suitable for monitoring the LCFC process and as a critical parameter to optimize the control method than ring-down counts in the noisy factory environment.Moreover, three types of materials are studied in this experiment; by combine with the AE results, macroscopic images and microscopic images of sections, characteristics of various LCFC stages are obtained. The results also indicated reduce the area of the transient fracture zone is the key to improve the section quality. Reducing the load frequency before the unstable crack propagation stage will beneficial to realize the goals. Based on the evaluation of kurtosis, an optimized control method is presented, and two control parameters: transient time T and the critical value of the slope of kurtosis C are determined. For 16Mn, 1045 and Al 6061, the T is 5s, 10s, and 1s, respectively. For 16Mn, 1045, and Al 6061, the C is 100, 300, and 0, respectively. Two parameters, h and S, are used to evaluate the section quality and four control strategies are compared. The results indicate the optimal control methods can improve the section quality effectively. The influence trend of reducing loading frequency is investigated by further comparison. It can be seen as the frequency decreases, the efficiency of the section quality improving decreases. In order to realize the optimal results, different control strategies are adopted for different materials. Strategy 1 (high frequency is 20Hz,high frequency thought the whole process), strategy 2 (high frequency is 20Hz,low frequency is 8.33Hz), and strategy 3 (high frequency is 20Hz,low frequency is 6.67Hz) is suitable for Al 6061, 1045, and 16Mn, respectively.


Author(s):  
SAMUNDRA GURUNG ◽  
SUMATE NAETILADDANON ◽  
ANAWACH SANGSWANG

Currently, large-scale solar farms are being rapidly integrated in electrical grids all over the world. However, the photovoltaic (PV) output power is highly intermittent in nature and can also be correlated with other solar farms located at different places. Moreover, the increasing PV penetration also results in large solar forecast error and its impact on power system stability should be estimated. The effects of these quantities on small-signal stability are difficult to quantify using deterministic techniques but can be conveniently estimated using probabilistic methods. For this purpose, the authors have developed a method of probabilistic analysis based on combined cumulant and Gram– Charlier expansion technique. The output from the proposed method provides the probability density function and cumulative density function of the real part of the critical eigenvalue, from which information concerning the stability of low-frequency oscillatory dynamics can be inferred. The proposed method gives accurate results in less computation time compared to conventional techniques. The test system is a large modified IEEE 16-machine, 68-bus system, which is a benchmark system to study low-frequency oscillatory dynamics in power systems. The results show that the PV power fluctuation has the potential to cause oscillatory instability. Furthermore, the system is more prone to small-signal instability when the PV farms are correlated as well as when large PV forecast error exists.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 398 ◽  
Author(s):  
Jun Deng ◽  
Nan Xia ◽  
Jungang Yin ◽  
Jiliang Jin ◽  
Shutao Peng ◽  
...  

With the continuous proliferation of renewable energy generation, distributed photovoltaic inverters operating at a maximum power point reduce the inertia of power systems, degrading system frequency stability and potentially causing severe oscillations in systems after being disturbed. The virtual synchronous generator (VSG) control method, which causes photovoltaic inverters to possess inertia and damping, now plays an important role in the field of distributed generation. However, while introducing the advantages of synchronous machines, problems with oscillations are also introduced and the stochastic fluctuation characteristic of photovoltaics results in the stochastic drifting of the operating point. This paper presents an adaptive controller parameter design method for a photovoltaic-VSG (PV-VSG) integrated power system. Firstly, a small-signal model of the PV-VSG is built and a state space model is deduced. Then, the small-signal stability and low frequency oscillation characteristics of the photovoltaic power generation system are analyzed. Finally, considering the limitations of system oscillations and the stochastic drifting of the operating point, a global optimization design method for controller parameters used to improve system stability is proposed. The time domain simulation shows that an optimized PV-VSG could provide sufficient damping in the case of photovoltaic power output changes across a wider range.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3440 ◽  
Author(s):  
Edgar Lucas ◽  
David Campos-Gaona ◽  
Olimpo Anaya-Lara

Synthetic inertia provision through the control of doubly-fed induction generator (DFIG) wind turbines is an effective means of providing frequency support to the wider electrical network. There are numerous control topologies to achieve this, many of which work by making modifications to the DFIG power controller and introducing additional loops to relate active power to electrical frequency. How these many controller designs compare to one-another in terms of their contribution to frequency response is a much studied topic, but perhaps less studied is their effect on the small-signal stability of the system. The concept of small-signal stability in the context of a power system is the ability to maintain synchronism when subjected to small disturbances, such as those associated with a change in load or a loss of generation. Amendments made to the control system of a large-scale wind farm will inevitably have an effect on the system as a whole, and by making a DFIG wind turbine behave more like a synchronous generator, which synthetic inertia provision does, may incur consequences relating to electromechanical oscillations between generating units. This work compares the implications of two prominent synthetic inertia controllers of varying complexity and their effect on small-signal stability. Eigenvalue analysis is conducted to highlight the key information relating to electromechanical modes between generators for the two control strategies, with a focus on how these affect the damping ratios. It is shown that as the synthetic inertia controller becomes both more complex and more effective, the damping ratio of the electromechanical modes is reduced, signifying a decreased system stability.


2013 ◽  
Vol 732-733 ◽  
pp. 848-851
Author(s):  
Chao Chun Li ◽  
Pei Hwa Huang

Power system small signal stability concerns the ability of the power system to maintain stability subject to small disturbances. The analysis of small signal stability often has to deal with high-order system matrix due to the large number of generating units so that it is not easy to calculate and analyze the original system matrix and the whole set of eigenvalues. In this paper a new approach is proposed to take advantage of the specific feature of the parallel structure of artificial neural network for calculating the most critical eigenvalue or all eigenvalues of the unstable oscillation mode. The developed algorithm is tested on a sample power system to validate the feasibility of the proposed method for the calculation of the critical eigenvalue.


2022 ◽  
Vol 12 (2) ◽  
pp. 589
Author(s):  
Abdul Waheed Khawaja ◽  
Nor Azwan Mohamed Kamari ◽  
Muhammad Ammirrul Atiqi Mohd Zainuri

Low frequency oscillations in large power systems may result in system instability under large disturbances. Power system stabilisers (PSS) play an effective role in damping these low frequency oscillations by injecting a modulating signal in the excitation loop of a synchronous machine. A new metaheuristic optimisation algorithm termed the sine cosine algorithm (SCA) was proposed for optimising PSS controller parameters to obtain an optimal solution with the damping ratio as an objective function. The SCA technique was examined on a single machine infinite bus (SMIB) system under distinct loading situations and matched with a moth flame optimisation technique and evolutionary programming to design a robust controller of PSS. The simulation was accomplished using a linearised mathematical model of the SMIB. The performance of a designed lead lag-controller of PSS was demonstrated using eigenvalue analysis with simulations, showing promising results. The dynamic performance was validated with respect to the damping ratio, the eigenvalue’s location in the s-plane and rotor angle deviation response to demonstrate system stability.


2017 ◽  
Vol 16 (1/2) ◽  
pp. 3-28 ◽  
Author(s):  
Prasenjit Dey ◽  
Aniruddha Bhattacharya ◽  
Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.


2021 ◽  
Vol 11 (14) ◽  
pp. 6256
Author(s):  
Mohamad Amin Ghasemi ◽  
Seyed Fariborz Zarei ◽  
Saeed Peyghami ◽  
Frede Blaabjerg

This paper proposes a nonlinear decoupled current control scheme for a grid-connected inverter with LCL filter. Decoupling the active and reactive current control channels is one of the main demands in the control of inverters. For inverters with an L filter, the decoupling can be achieved by a proper feed-forward of grid voltages. However, the coupling of channels is a complex issue for converters with LCL filters. The resonance mode of the LCL filter may cause instability, which adds more complexity to the analysis. In this paper, state equations of the system are provided, which highlight the coupling between active and reactive currents injected into the grid. Accordingly, a non-linear control scheme is proposed which effectively decouples the channels and dampens the resonant modes of the LCL filter. The stability of the proposed control method is verified by the Lyapunov criterion. Independency of the system stability to the grid-impedance is another feature of the proposed approach. Moreover, only grid-side currents are needed for implementation of the proposed scheme, avoiding the need for additional current sensors for the output capacitor and grid-side inductor. For accurate modelling of the inverter, the computation and PWM sampling delays are included in the controller design. Finally, various case studies are provided that verify the performance of the proposed approach and the stability of the system.


Author(s):  
Wanwan Xu ◽  
Bin Wang ◽  
Jiang Liu ◽  
Da Li

This paper presents an improved droop control strategy for grid-connected inverter power stability and power quality under distorted with consideration of grid fluctuation and inter-harmonics. An instantaneous frequency without PLL and amplitude of capacitor voltage feed-forward control strategy is given to power stability control, meanwhile a grid current feedback control is given by an incomplete derivation with a high-pass filter, so that the harmonics and inter-harmonics current can be suppressed. These approaches can provide both good active and reactive power dynamic response under fluctuation of frequency, and rejection ability against harmonic and inter-harmonic voltage. Based on model of inverter, the proposed control strategies are designed in detail. Simulations and experiments are present to validate the effectiveness of proposed method.


Sign in / Sign up

Export Citation Format

Share Document