scholarly journals Financial and Performance Analyses of Microcontroller Based Solar-Powered Autorickshaw for a Developing Country

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Abu Raihan Mohammad Siddique ◽  
M. Shamim Kaiser

This paper presents a case study to examine the economic viability and performance analysis of a microcontroller based solar powered battery operated autorickshaw (m-SBAR), for the developing countries, which is compared with different types of rickshaws such as pedal rickshaw (PR), battery operated autorickshaw (BAR), and solar-powered battery operated autorickshaw (SBAR), available in Bangladesh. The BAR consists of a rickshaw structure, a battery bank, a battery charge controller, a DC motor driver, and a DC motor whereas the proposed m-SBAR contains additional components like solar panel and microcontroller based DC motor driver. The complete design considered the local radiation data and load profile of the proposed m-SBAR. The Levelized Cost of Energy (LCOE) analysis, Net Present Worth, payback periods, and Benefit-to-Cost Ratio methods have been used to evaluate the financial feasibility and sensitivity analysis of m-SBAR, grid-powered BAR, and PR. The numerical analysis reveals that LCOE and Benefit-to-Cost Ratio of the proposed m-SBAR are lower compared to the grid-powered BAR. It has also been found that microcontroller based DC motor control circuit reduces battery discharge rate, improves battery life, and controls motor speed efficiency.

Author(s):  
Cosmas Tatenda Katsambe ◽  
Vinukumar Luckose ◽  
Nurul Shahrizan Shahabuddin

Pulse width modulation (PWM) is used to generate pulses with variable duty cycle rate. The rapid rising and falling edges of PWM signal minimises the switching transition time and the associated switching losses. This paper presents a DC motor speed controller system using PWM technique. The PWM duty cycle is used to vary the speed of the motor by controlling the motor terminal voltage.The motor voltage and revolutions per minutes (RPM) obtained at different duty cycle rates. As the duty cycle increases, more voltage is applied to the motor. This contributes to the stronger magnetic flux inside the armature windings and the increasethe RPM. The characteristics and performance of the DC motor speed control system was investigated. In this paper, a PIC microcontroller and a DC-DC buck converter are employed in the DC motor speed controller system circuit. The microcontroller provides flexibility to the circuit by incorporating two push button switches in order to increase and to decrease the duty cycle rate. The characteristics and performance of the motor speed controller system using microcontroller was examined at different duty cycle rate ranging from 19% to 99%.


2021 ◽  
Vol 2 (2) ◽  
pp. 348-362
Author(s):  
Babatunde SOYOYE

The continuous increase in the cost of fuel and the effect of emission of gases from burned fuel into the atmosphere when operating engine powered lawn mower has necessitated the use of the abundant solar energy from the sun as a power source of a lawn mower. A solar powered lawn mower was designed, fabricated and assembled on the basis of the general principle of mowing. The components of the lawn mower are; direct current (DC) motor, rechargeable battery, solar panel, galvanized steel blade of various thicknesses and shapes, and a speed controller. The required torque needed to drive the galvanized steel blade was achieved through the DC motor. The speed of the DC motor was controlled by the speed controller with the resistance in the circuit and allowed the motor to drive the blade at varied speeds. The battery recharged through the solar charging circuit, which comprises of a solar panel and charge controller. Performance evaluation was conducted on the developed mower with various thicknesses (1 mm, 1.5 mm and 2 mm) and shapes of the cutting blade (two, three and four blades). It was found that the cutting efficiency of the mower ranges from 70.50% - 84.10%, also the cutting capacity ranges from 0.05 ha h-1 - 0.27 ha h-1, the uncut area was also found to range from 15.90% - 29.50%.


2019 ◽  
Vol 3 (1) ◽  
pp. 186-192
Author(s):  
Yudi Wibawa

This paper aims to study for accurate sheet trim shower position for paper making process. An accurate position is required in an automation system. A mathematical model of DC motor is used to obtain a transfer function between shaft position and applied voltage. PID controller with Ziegler-Nichols and Hang-tuning rule and Fuzzy logic controller for controlling position accuracy are required. The result reference explains it that the FLC is better than other methods and performance characteristics also improve the control of DC motor.


Author(s):  
Andrean George W

Abstract - Control and monitoring of the rotational speed of a wheel (DC motor) in a process system is very important role in the implementation of the industry. PWM control and monitoring for wheel rotational speed on a pair of DC motors uses computer interface devices where in the industry this is needed to facilitate operators in controlling and monitoring motor speed. In order to obtain the best controller, tuning the Integral Derifative (PID) controller parameter is done. In this tuning we can know the value of proportional gain (Kp), integral time (Ti) and derivative time (Td). The PID controller will give action to the DC motor control based on the error obtained, the desired DC motor rotation value is called the set point. LabVIEW software is used as a PE monitor, motor speed control. Keyword : LabView, Motor DC, Arduino, LabView, PID.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4034
Author(s):  
Arie Haenel ◽  
Yoram Haddad ◽  
Maryline Laurent ◽  
Zonghua Zhang

The Internet of Things world is in need of practical solutions for its security. Existing security mechanisms for IoT are mostly not implemented due to complexity, budget, and energy-saving issues. This is especially true for IoT devices that are battery powered, and they should be cost effective to be deployed extensively in the field. In this work, we propose a new cross-layer approach combining existing authentication protocols and existing Physical Layer Radio Frequency Fingerprinting technologies to provide hybrid authentication mechanisms that are practically proved efficient in the field. Even though several Radio Frequency Fingerprinting methods have been proposed so far, as a support for multi-factor authentication or even on their own, practical solutions are still a challenge. The accuracy results achieved with even the best systems using expensive equipment are still not sufficient on real-life systems. Our approach proposes a hybrid protocol that can save energy and computation time on the IoT devices side, proportionally to the accuracy of the Radio Frequency Fingerprinting used, which has a measurable benefit while keeping an acceptable security level. We implemented a full system operating in real time and achieved an accuracy of 99.8% for the additional cost of energy, leading to a decrease of only ~20% in battery life.


Author(s):  
Davut Izci

This paper deals with the design of an optimally performed proportional–integral–derivative (PID) controller utilized for speed control of a direct current (DC) motor. To do so, a novel hybrid algorithm was proposed which employs a recent metaheuristic approach, named Lévy flight distribution (LFD) algorithm, and a simplex search method known as Nelder–Mead (NM) algorithm. The proposed algorithm (LFDNM) combines both LFD and NM algorithms in such a way that the good explorative behaviour of LFD and excellent local search capability of NM help to form a novel hybridized version that is well balanced in terms of exploration and exploitation. The promise of the proposed structure was observed through employment of a DC motor with PID controller. Optimum values for PID gains were obtained with the aid of an integral of time multiplied absolute error objective function. To verify the effectiveness of the proposed algorithm, comparative simulations were carried out using cuckoo search algorithm, genetic algorithm and original LFD algorithm. The system behaviour was assessed through analysing the results for statistical and non-parametric tests, transient and frequency responses, robustness, load disturbance, energy and maximum control signals. The respective evaluations showed better performance of the proposed approach. In addition, the better performance of the proposed approach was also demonstrated through experimental verification. Further evaluation to demonstrate better capability was performed by comparing the LFDNM-based PID controller with other state-of-the-art algorithms-based PID controllers with the same system parameters, which have also confirmed the superiority of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document