Straight-Move Robot Control System with LabView-Based Proportional Integral Derivative (PID) Control

Author(s):  
Andrean George W

Abstract - Control and monitoring of the rotational speed of a wheel (DC motor) in a process system is very important role in the implementation of the industry. PWM control and monitoring for wheel rotational speed on a pair of DC motors uses computer interface devices where in the industry this is needed to facilitate operators in controlling and monitoring motor speed. In order to obtain the best controller, tuning the Integral Derifative (PID) controller parameter is done. In this tuning we can know the value of proportional gain (Kp), integral time (Ti) and derivative time (Td). The PID controller will give action to the DC motor control based on the error obtained, the desired DC motor rotation value is called the set point. LabVIEW software is used as a PE monitor, motor speed control. Keyword : LabView, Motor DC, Arduino, LabView, PID.

In developed nations, industries are made to function at control engineering costs via the use of appropriate control schemes for dc motors. This paper introduces the role played by dc motors in industries thereby necessitating the analysis and performance validation of dc motor in Internal Model Control (IMC) scheme as against the Proportional– Integral–Derivative (PID) control schemes that is widely used in most industries. Theories on dc motor model, PID and IMC controller were detailed to paved the way for the methodical approach of getting specifications and transfer function for a typical dc motor (model RMCS-3011). Matlab/Simulink software was then used to tune the PID controller for the purpose of finding the values of PID gains that meets the design requirements to achieve best performance, thereby enabling the simulation of the PID controller. Using Matlab m-file environment, IMC controller transfer function was generated and simulated. The IMC controller transfer function aimed at achieving a unity gain that tracks the set-point was approximately realized. In the realization process, it was obvious that a filter is required. The aim of this work is to evaluate the performance of the IMC controller over PID controller. Simulated plots in Matlab-Simulink using the PID gains for the PID controller, and time constants and filter order for the IMC were presented. The quantitative results of the IMC method when compared with that of PID control provides a commendable performance. However, the performance in terms of rise time is small and preferred with the use of Matlab-Simulink tuned PID controller. Conclusively, IMC controller would be the preferred controller where the robustness and accuracy of the dc motor speed control counts more than faster response


Author(s):  
Salman Jasim Hammoodi ◽  
Kareem Sayegh Flayyih ◽  
Ahmed Refaat Hamad

<span>In this paper, we first write a description of the operation of DC motors taking into account which parameters the speed depends on thereof. The PID (Proportional-Integral-Derivative) controllers are then briefly described, and then applied to the motor speed control already described , that is, as an electronic controller (PID), which is often referred to as a DC motor. The closed loop speed control of a Brush DC motor is developed applying the well-known PID control algorithm. The objective of this work is to designed and simulate a new control system to keep the speed of the DC motor constant before variations of the load (disturbances), automatically depending to the PID controller. The system was designed and implementation by using MATLAB/SIMULINK and  DC motor.</span>


Author(s):  
Alifa Restu Janwar Wiriawan

Abstract - DC motors are widely used in small and large industries. DC motor speed is often unstable due to outside interference and changes in the parameters of the fabrication so it is necessary to design a controller. Motor DC speed adjustment and monitoring is a crucial system as it i implemented in industrial. This motor DC speed adjustment and monitoring using computer interface where in industial this system will support operator for adjusting and monitoring motor speed. For acquiring best control parameters, tuning is needed for acquiring best Proportional Integral Derivative(PID) value. This tuning is used for find the best proportional gain, time integral, derivative time. PID controller will give a better control respond to the DC Motor based on the error, the DC motor rotation speed needed is called Setpoint. The labview software used as an interface of monitor and control. Keyword : LabView, Motor DC, Arduino, Ouptocoupler, Computer


Author(s):  
Yasir G. Rashid ◽  
Ahmed Mohammed Abdul Hussain

The point of this paper presents an optimization technique which is flexible and quick tuning by using a genetic algorithm (GA) to obtain the optimum proportional-integral-derivative (PID) parameters for speed control of aseparately excited DC motor as a benchmark for performance analysis. The optimization method is used for searching for the proper value of PID parameters. The speed controller of DC motor using PID tuning method sincludes three types: MATALB PID tunner app., modified Ziegler-Nicholsmethod and genetic algorithm (GA). PID controller parameters (Kp, Ki and Kd) will be obtained by GA to produce optimal performance for the DC motor control system. Simulation results indicate that the tuning method of PID by using a genetic algorithm is shown to create the finest result in system performance such as settling time, rise time, percentage of overshoot and steady state error. The MATLAB/Simulink software is used to model and simulate the proposed DC motor controller system.


2012 ◽  
Vol 466-467 ◽  
pp. 1246-1250 ◽  
Author(s):  
Bin Ma ◽  
Qing Bin Meng ◽  
Feng Yu ◽  
Zhong Hua Han ◽  
Chang Tao Wang

In this paper, a controller is designed based on improved fuzzy PID to solve the problem that the dc motor performance of speed and dynamic is poor when using the conventional PID controller for the lack of adaptive capacity of the controller parameters. The improved fuzzy control algorithm is used for the tuning of PID controller to get good speed performances, which automatically adjust the parameter of PID controller according to the motor speed. The simulation results show that the improved fuzzy PID control with the advantages of fast response, small overshoot and strong anti-interference capability can effectively improve the dynamic characteristics and steady state accuracy.


2013 ◽  
Vol 336-338 ◽  
pp. 463-466 ◽  
Author(s):  
Shao Jie Xu ◽  
Jing Fei Zhu ◽  
Su Ying Zhang ◽  
Yun Du

For wheeled robot motion control, brushless DC motor speed control system of wheeled mobile robot parameters time-varying, nonlinear, uncertainties and other factors, with the traditional PID control algorithm is difficult to meet the control requirements this article combination of traditional PID control technology and fuzzy control technology, is designed based on the parameters of fuzzy self-tuning PID DC motor control. This article describes the principles and design steps of fuzzy self-tuning PID Matlab simulation of the control program, the results show that the controller has achieved a good speed and stability.


2021 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
Irfan Irhamni ◽  
Riries Rulaningtyas ◽  
Riky Tri Yunardi

DC motor is an easy-to-apply motor but has inconsistent speed due to the existing load. PID (Proportional Integral Differential) is one of the standard controllers of DC motors. This study aimed to know the PID controller's performance in controlling the speed of a DC motor. The results showed that the PID controller could improve the error and transient response of the system response generated from DC motor speed control. Based on the obtained system response data from testing and tuning the PID parameters in controlling the speed of a DC motor, the PID controller parameters can affect the rate of a DC motor on the setpoint of 500, 1000, 1500: Kp = 0.05, Ki = 0.0198, Kd = 0.05.


Author(s):  
Ivan Candra Utama

Abstract - The balancing ball system is a system where there is a ball that can move freely on a rod and the position of the ball move can be adjusted automatically according to the desired set point. The balancing ball system is a very important system in studying the control system. This is because the balancing ball system is an unstable system where the output of the system (ball position) always increases indefinitely for each input (rod angle) with a fixed value. Therefore, ball balancing systems require complex control theories. To be able to stabilize the balancing ball system, a controller is needed. In order to get the best controller, tuning the Integral Derifative (PID) controller parameter is done. In this tuning we can know the value of proportional gain (Kp), integral time (Ti) and derivative time (Td). The PID controller will give action to the balancing ball control based on the error obtained, the distance between the ultrasonic sensor and the desired ball is called the set point. LabVIEW software is used as a monitor, servo motor speed control. Keyword : Labview, Balance Ball, Arduino, Motor Servo, Ultrasonic Sensor


Author(s):  
Sharad Gupta

New applications requiring both speed and position control have emerged as a result of technological advancements. In many applications, a DC motor's speed and position can be adjusted. The PID controller controls the speed and position of individually stimulated DC motors. Using LabVIEW software, this study attempts to control the speed and position of a DC motor as well as calculate the closed loop system model. Nonlinearity in any system has undesirable implications in normal operation. Unwanted outcomes including dead zones, saturation, and system reaction.


Author(s):  
Arnisa Myrtellari ◽  
Petrika Marango ◽  
Margarita Gjonaj

The DC motors are widely used in the mechanisms that require control of speed. Different speed can be obtained by changing the field voltage and the armature voltage. The classic PID controllers are widely used in industrial process for speed control. But they aren’t suitable for high performance cases, because of the low robustness of PID controller. So many researchers have been studying various new control techniques in order to improve the system performance and tuning PID controllers. This paper presents particle swarm optimization (PSO) method for determining the optimal PID controller parameters to find the optimal parameters of DC Motor speed control system. The DC Motor system drive is modeled in MATLAB/SIMULINK and PSO algorithm is implemented using MATLAB toolbox. The results obtained through simulation show that the proposed controller can perform an efficient search for the optimal PID controller. Simulation results show performance improvement in time domain specifications for a step response (no overshoot, minimal rise time, steady state error = 0).


Sign in / Sign up

Export Citation Format

Share Document