scholarly journals A Control Method to Balance the Efficiency and Reliability of a Time-Delayed Pump-Valve System

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhounian Lai ◽  
Peng Wu ◽  
Shuai Yang ◽  
Dazhuan Wu

The efficiency and reliability of pumps are highly related to their operation conditions. The concept of the optimization pump operation conditions is to adjust the operation point of the pump to obtain higher reliability at the cost of lower system efficiency using a joint regulation of valve and frequency convertor. This paper realizes the control of the fluid conveying system based on the optimization results. The system is a nonlinear Multi-Input Multioutput (MIMO) system with time delays. In this paper, the time delays are separated from the system. The delay-free system is linearized using input-output linearization and controlled using a sliding mode method. A modified Smith predictor is used to compensate time delays of the system. The control strategy is validated to be effective on the test bench. The comparison of energy consumption and operation point deviation between conventional speed regulation and the new method is presented.


Author(s):  
Linjie Xin ◽  
◽  
Qinglin Wang ◽  
Yuan Li ◽  
Jinhua She ◽  
...  

This study investigates the terminal sliding mode (TSM) control for a class of first-order uncertain systems with dead-zone and saturation. First, a new adaptive TSM control law was proposed for the single-input and single-output (SISO) systems by employing an integral fast TSM. It achieves rejection for both system uncertainty and input nonlinearity. The global reaching condition of the sliding mode is guaranteed by the Lyapunov stability theory. The new control law possesses faster convergence than the linear sliding mode method, and the singularity problem of TSM is avoided. Then, the control law was extended for tracking control of a dynamic model of spacecraft which was a multi-input and multi-output (MIMO) system. Finally, the simulation results confirmed the effectiveness of the proposed control method.



2019 ◽  
Vol 30 (01) ◽  
pp. 1950028
Author(s):  
Silvia Tolu ◽  
Marie Claire Capolei ◽  
Lorenzo Vannucci ◽  
Cecilia Laschi ◽  
Egidio Falotico ◽  
...  

The cerebellum, which is responsible for motor control and learning, has been suggested to act as a Smith predictor for compensation of time-delays by means of internal forward models. However, insights about how forward model predictions are integrated in the Smith predictor have not yet been unveiled. To fill this gap, a novel bio-inspired modular control architecture that merges a recurrent cerebellar-like loop for adaptive control and a Smith predictor controller is proposed. The goal is to provide accurate anticipatory corrections to the generation of the motor commands in spite of sensory delays and to validate the robustness of the proposed control method to input and physical dynamic changes. The outcome of the proposed architecture with other two control schemes that do not include the Smith control strategy or the cerebellar-like corrections are compared. The results obtained on four sets of experiments confirm that the cerebellum-like circuit provides more effective corrections when only the Smith strategy is adopted and that minor tuning in the parameters, fast adaptation and reproducible configuration are enabled.



2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Hongliang Xiao ◽  
Huacong Li ◽  
Kai Peng ◽  
Jia Li

Abstract In this paper, a model reference adaptive sliding mode control method is proposed for a variable cycle engine (VCE) which is a MIMO system with uncertainties and external disturbances. The reference model is designed based on optimal LQR method to provide ideal reference states. An adaptive sliding mode controller (ASMC) is designed for model reference adaptive control structure, which the adaptive law is derived based on Lyapunov function to estimate the unknown upper bound of uncertainties and external disturbances. Simulation results for VCE demonstrate the performance and fidelity of the proposed method.



2016 ◽  
Vol 39 (8) ◽  
pp. 1195-1204 ◽  
Author(s):  
Huiming Wang ◽  
Shihua Li ◽  
Qixun Lan ◽  
Zhenhua Zhao ◽  
Xingpeng Zhou

In this paper, we discuss the speed regulation problem of permanent magnet synchronous motor (PMSM) servo systems. Firstly, a continuous terminal sliding mode control (CTSMC) method is introduced for speed loops to eliminate the chattering phenomenon while still ensuring a strong disturbance rejection ability for the closed-loop system. However, in the presence of strong disturbances, the CTSMC law still needs to select high gain which may result in large steady-state speed fluctuations for the PMSM control system. To this end, an extended state observer (ESO)-based continuous terminal sliding mode control method is proposed. The ESO is employed to estimate system disturbances and the estimation is employed by the speed controller as a feed-forward compensation for disturbances. Compared to the conventional sliding mode control method, the proposed composite sliding control method obtains a faster convergence and better tracking performance. Also, by feed-forward compensating system disturbances and tuning down the gain of the CTSMC law, the fluctuation of steady-state speed of the closed-loop system is reduced while the disturbance rejection capability of the PMSM system is still maintained. Simulation and experimental results are provided to demonstrate the superior properties of the proposed control method.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiajie Wu ◽  
Zebin Yang ◽  
Xiaodong Sun ◽  
Ding Wang

PurposeThe purpose of the control method proposed in this paper is to address the problem of the poor anti-interference of the suspension winding current in the traditional bearingless induction motor (BL-IM) direct suspension force control process.Design/methodology/approachA model predictive direct suspension force control of a BL-IM based on sliding mode observer is proposed in this paper. The model predictive control (MPC) is introduced to the traditional direct suspension force control to improve the anti-interference of the suspension current. A sliding mode flux linkage observer is designed and applied to the MPC system, which reduces the error of the parameter observation and improves the robustness of the system. The strategy is designed and implemented in the MATLAB/Simulink and the two-level AC speed regulation platform.FindingsThe simulation and experimental results show that the performance of the BL-IM under the control method proposed in this paper is better than that under the traditional direct suspension force control, and the suspension performance of the motor and the anti-interference of the control system are improved.Originality/valueThis study helps to improve the suspension performance of the motor and the anti-interference of the control system.



Sign in / Sign up

Export Citation Format

Share Document